
Reasoning about Airport Security Regulations
using the Focal Environment

David Delahaye
CEDRIC/CNAM, Paris, France
David.Delahaye@cnam.fr

Jean-Frédéric Étienne
CEDRIC/CNAM, Paris, France

etien_je@auditeur.cnam.fr

Véronique Viguié Donzeau-Gouge
CEDRIC/CNAM, Paris, France

donzeau@cnam.fr

Abstract— We present the validation of regulations intended
to ensure airport security in the framework of civil aviation.
In particular, we describe the proofs of correctness/completeness
for two standards, one at the international level and the other
at the European level, and we show how the properties of the
European level refines those of the international level. These
models are expressed using the Focal environment, an object-
oriented specification and proof system, and the proofs described
by means of a declarative-like language are processed by the
automated theorem prover Zenon. We show how Zenon appears
quite appropriate when dealing with abstract specifications like
our case study, but also how it should be controlled to present
readable proofs.

I. INTRODUCTION

Many human activities are controlled by regulations and
standards. These are usually legal expressions of policy
choices, which intend to govern the behavior of individu-
als/processes in the perspective to ensure some safety or
security properties, or to simply promote a fair and equitable
behavior among various interacting stake-holders. Regulations
can be seen as a set of rules/specifications and a key el-
ement to guarantee their effective enforcement is to assess
the conformity of the procedures and artifacts they intend to
regulate. However, the conformity assessment procedures are
worthless if the correctness, completeness and consistency of
the specifications are not established.

Standards and recommended practices are usually written
in natural language in order to be easily understood and
adopted by a large number of stake-holders. Nevertheless,
the normative documents are generally of voluminous size,
ambiguous and often open to (mis-)interpretation. Moreover,
it is very difficult to automatically process natural language
documents in search for inconsistencies. When a document
is several hundred pages long, it is difficult to ensure that
the content of a particular paragraph is not contradicted by
some others which may be several dozen pages from the
first one. This is even more problematic when analyzing the
effects of changes over the entire regulatory system, especially
for normative documents maintained by different standardized
committees. All these problems highlight the lack of a formal
drafting process and this is where modeling techniques can
help. Recent work [1] has shown that there is an increased
interest in providing automated and systematic support to
reason about regulations due to the growing complexity of
safety and security requirements.

In this paper, we report on our experience in building and
analyzing the formal models of two standards related to airport
security: the first one is the international standard Annex 17 [2]
produced by the International Civil Aviation Organization
(ICAO), an agency of the United Nations; the second one
is the European Directive Doc 2320 [3] produced by the
European Civil Aviation Conference (ECAC) and which is
supposed to refine the first one at the European level. This
formalization was completed using the Focal [4] environment
and within the framework of the EDEMOI1 [5] project.
The EDEMOI project aims to integrate and apply several
requirements engineering and formal methods techniques to
analyze regulation standards in the domain of airport security.
The novelty of the methodology developed in this project,
resides in the application of techniques, usually reserved for
safety-critical software, to the domain of regulations (in which
no implementation is expected).

This paper is complementary to the work presented in [6],
which details the structure of the formal models produced for
the two regulations considered above. In [6], we show that
in order to provide an appropriate support for the analysis
of the regulations, we have to encode the terminologies, the
concepts, as well as the integrity constraints characterizing
the environment that they intend to regulate. In addition, the
formal models produced make a clear distinction between the
security requirements and the ways/means to implement them.
In fact, from these models, it should be possible to rigorously
assess the conformity of a given implementation w.r.t. the
security requirements. In this paper, we focus on the validation
part of this work. To do so, we first highlight the importance
of organizing the regulations as a hierarchy of goals down to
specific security requirements. Second, we show how to reason
about the said hierarchy to detect anomalies (or to provide
evidence of their absence) and to identify hidden assumptions
which may lead to shortcomings when additional explanations
are required.

Another motivation of this paper is to introduce the Fo-
cal [4] (previously Foc) environment, developed by the Focal
team, and to show how this tool is appropriate when dealing
with this kind of application. The idea is to assess and
validate the design features but also the reasoning support

1The EDEMOI project is supported by the French National "Action
Concertée Incitative Sécurité Informatique".



mechanism offered by the Focal specification and proof
system. In the models of our case study, amongst others,
we essentially use the features of inheritance (refinement)
and parameterization (modularity). Regarding the reasoning
support, the declarative-like proof language appears to be
quite appropriate to describe our proofs naturally, whereas the
first-order automated theorem-prover of Focal, called Zenon,
provides us an effective help by automatically discharging
most of the proofs required by the specification.

The paper is organized as follows: first, we give a brief
description of the Focal language with its main structures
and features; next, we present the analysis of our case study
(i.e. the several standards regulating security in airports and in
particular, those we chose to model); finally, we describe the
validation part of our models made in Focal, that is to say the
different proofs ensuring the correctness/completeness of the
regulations considered.

II. THE Focal ENVIRONMENT

In this section, we present very briefly the Focal environ-
ment giving, in particular, the syntax as well as the informal
semantics for the specifications and the proofs. This will
be useful to understand the formalization and especially the
validation of the regulations we consider in this paper (see
Section IV). To get a more concrete presentation of Focal, the
reader can refer to [6], [7], as well as to the standard library
where numerous examples can be found (see Section II-D).

A. What is Focal?

Focal [4], initiated by T. Hardin with R. Rioboo and
S. Boulmé, is a language in which it is possible to build
applications step by step, going from abstract specifications,
called species, to concrete implementations, called collections.
These different structures are combined using inheritance and
parameterization, inspired by object-oriented programming; in
addition, each of these structures is equipped with a carrier set,
providing a typical algebraic specification flavor. Moreover, in
this language, there is a neat separation between the activities
of programming and proving. A compiler was developed by
V. Prevosto for this language, able to produce Ocaml [8] code
for execution, Coq [9] code2 for certification, but also code for
documentation (generated by means of structured comments).
More recently, D. Doligez provided a first-order automated
theorem prover, called Zenon, which helps the user to com-
plete his/her proofs in Focal through a declarative-like proof
language. This automated theorem prover can produce pure
Coq proofs, which are reinserted in the Coq specifications
generated by the Focal compiler and fully verified by Coq.

B. Specification: species and collection

The first major notion of the Focal language is the structure
of species, which corresponds to the highest level of abstrac-
tion in a specification. A species can be roughly seen as a list

2Here, Coq is only used as a proof checker, and not to extract, from
provided proofs and using its Curry-Howard isomorphism capability, Ocaml
programs, which are directly generated from Focal specifications.

of attributes and there are three kinds of attributes: the carrier
type, called representation, which is the type of the entities that
are manipulated by the functions of the species and which can
be either abstract or concrete; the functions, which denote the
operations allowed on the entities; the functions can be either
definitions (when a body is provided) or declarations (when
only a type is given); the properties, which must be verified by
any further implementation of the species and which can be
either simply properties (when only the proposition is given)
or theorems (when a proof is also provided).

More concretely, the general syntax of a species is the
following:

species <name> =

rep [= <type>]; (* abstract/concrete
representation *)

sig <name> in <type>; (* declaration *)
let <name> = <body>; (* definition *)

property <name> : <prop>; (* property *)
theorem <name> : <prop> (* theorem *)
proof : <proof>;

end

where <name> is simply a given name, <type> a type
expression (mainly typing of core-ML without polymorphism
but with inductive types), <body> a function body (mainly
core-ML with conditional, pattern-matching and recursion),
<prop> a (first-order) proposition and <proof> a proof
(expressed in a declarative style and given to Zenon). In the
type language, the specific expression self refers to the type of
the representation and may be used everywhere except when
defining a concrete representation.

As said previously, species can be combined using (mul-
tiple) inheritance, which works as expected. It is possible
to define functions that were previously only declared or
to prove properties which had no provided proof. It is also
possible to redefine functions previously defined or to reprove
properties already proved. However, the representation cannot
be redefined and functions as well as properties must keep
their respective types and propositions all along the inheritance
path. Another way of combining species is to use parameter-
ization. Species can be parameterized either by other species
or by entities from species. If the parameter is a species, the
parameterized species only has access to the interface of this
species, i.e. only its abstract representation, its declarations
and its properties. These two features complete the previous
syntax definition as follows:

species <name> (<name> is <name>,
<name> in <name>, . . .)

inherits <name>, <name> (<pars>), . . . = . . .
end

where <pars> is a list of <name> and denotes the names
which are used as parameters. When the parameter is a species,
the keyword is is, when it is an entity of a species, the keyword
is in.



The other main notion of the Focal language is the structure
of collection, which corresponds to the implementation of a
species. We will not detail this notion here since it is not used
in our formalization (see Section IV). Actually, the airport
security regulations considered in this paper are rather abstract
and are not expected to be implemented.

C. Certification: proving with Zenon

The certification of a Focal specification is ensured by
the possibility of proving properties. To do so, a first-order
automated theorem prover, called Zenon and based on the
tableau method, helps us to complete the proofs. Basically,
there are two ways of providing proofs to Zenon: the first
one is to give all the properties (proved or not) and definitions
needed by Zenon to build a proof with its procedure; the
second one is to give additional auxiliary lemmas to help
Zenon to find a proof. In the first option, Zenon must be
strong enough to find a proof with only the provided properties
and definitions; the second option must be considered when
Zenon needs to be helped a little more or when the user likes
to present his/her proof in a more readable form. In the first
option, proofs are described as follows:

theorem <name> : <prop>
proof : by <props> def <defs>;

where <props> is a list of properties and <defs> a list of
definitions.

The proof language of the second option is inspired by a
proposition by L. Lamport [10], which is based on a practical
and hierarchical structuring of proofs using number labels for
proof depth:

theorem <name> : <prop>
proof :

<<level>><label> assume <hyps> prove <prop>
<<level>><label> qed [by <props> def <defs>];

where <level> is a natural number, <label> a name and
<hyps> a list of hypotheses (of the form <name> : <type>
or <prop>). The assume . . . prove expression is used to
introduce a new goal to be proved (assume provides skolem-
ization); in the following part of the proof, the level must be
increased. The qed expression closes a proof level (possibly
with the help of the following by . . . def provided by the user).

D. Further information

For additional information regarding Focal and, in
particular, for examples of specifications, the reader can refer
to [6], [7], as well as to the Focal Web site:

http://focal.inria.fr/

which contains the Focal distribution (compiler, Zenon and
other tools), the reference manual, a tutorial, some FAQs and
also some other references regarding, in particular, Focal’s
formal semantics (e.g. see S. Boulmé and S. Fechter’s PhD
theses).

III. REGULATION ANALYSIS

A. Case study

Airport security controls are governed by a series of stan-
dards and recommended practices, whose primary concern
is the safeguard of civil aviation against acts of unlawful
interference. These normative documents describe the general
principles, organization and recommended practices that each
stake-holder has to adopt and implement to meet security
requirements. The entire regulatory system is organized in
an hierarchical way, where each level has its own set of
normative documents that are drafted and maintained by
different bodies. At the international level, Annex 17 [2] of the
International Civil Aviation Organization (ICAO) prescribes
a set of preventive security measures and practices to be
adopted by each member state. It is refined at the European
level by the Doc 2320 [3] produced by the European Civil
Aviation Conference (ECAC). At the national level, each
contracting state has to establish and maintain a national civil
aviation security programme in compliance with international
standards and national laws. Finally, at the airport level, the
national and international standards are implemented by an
airport security programme, which specifies the design and
infrastructure-related requirements necessary to establish the
security measures.

All these documents are written in natural language and
due to their rather voluminous size, it is difficult to manually
process the entire regulation in search of inconsistencies. In
addition, informal definitions may be interpreted in different
ways, and thus can have an adverse impact on the outcome
of inspection visits to evaluate the conformity of an airport
facility against the prevailing standards. However, these doc-
uments have the merit of being rigorously structured. Hence,
ensuring their correctness, completeness and consistency while
eliminating any ambiguity or misunderstanding is a significant
step towards the reinforcement of airport security.

B. Security property analysis

When dealing with regulation models, it is essential for
the formal models to provide a certain structuring that fa-
cilitates the traceability and maintainability of the normative
documents. In our case, this structuring should even provide
support to analyze the impact of a particular security prop-
erty (which can be subjected to amendments due to newly
identified threats or new regulation dispositions) over the
entire regulatory system. To achieve this purpose, we analyzed
the dependencies between the security properties w.r.t. the
terminologies and concepts used in the normative documents.
Basically, this analysis consists in identifying the fundamental
security properties and establishing how they are decomposed
into sub-properties.

1) Annex 17: We naturally begun our analysis by consider-
ing the Annex 17 (international) standard, which is the highest
level of the regulation hierarchy. For the EDEMOI project,
we particularly focused on the preventive security measures
described in Chapter 4, whose objective is translated into the
following security property:



4.1 There are no unauthorized dangerous objects 3 on board
an aircraft.

Property 4.1 is afterwards treated according to six situations
that may lead to the introduction of unauthorized dangerous
objects on board aircraft. These are namely measures relat-
ing to access control (A17, 4.2), to aircraft (A17, 4.3), to
ordinary passengers and their cabin baggage (A17, 4.4), to
hold baggage (A17, 4.5), to cargo and mail (A17, 4.6), and
to special categories of passengers (A17, 4.7). From these
different categories of prevention, we established that to ensure
Property 4.1, the following security properties have to be
satisfied:

4.2 Persons (other than passengers) accessing aircraft are
trustworthy.

4.4 Ordinary passengers do not have access to unautho-
rized dangerous objects in cabin.

4.5 Hold baggage loaded into aircraft does not contain any
unauthorized dangerous objects.

4.7 Armed passengers admitted on board are eligible, while
potentially disruptive passengers who are obliged to
travel on commercial flights, cannot put at risk the
safety on board.

In Annex 17, these security properties characterize the intent
of the prescribed security measures. In addition, as the security
measures related to cargo, facilities and premises, and to
procedures performed during flight time (mainly 4.6 and 4.3)
do not fall within the scope of this case study, they are not
considered here. Using a sequent-like notation, the following
decomposition is therefore obtained for Property 4.1:

(4.2), (4.4), (4.5), (4.7) � (4.1)

Each property (from 4.2 to 4.7) is also decomposed into sub-
properties. For example, from the preventive measures related
to hold baggage (4.5), we extract the following security prop-
erties (we give the corresponding formalization in Section IV):

4.5.1 Originating hold baggage is screened prior to being
loaded into an aircraft.

4.5.2 All screened or checked-in hold baggage must be
protected from unauthorized interference.

4.5.3 Hold baggage for passengers who are not on board
the aircraft must not be transported, unless when
identified as unaccompanied and subjected to addi-
tional screening.

4.5.4 Transfer hold baggage is screened prior to being
loaded into an aircraft, unless it is established that it
has been screened to an appropriate level at the point
of origin.

4.5.5 Only hold baggage which has been individually
identified as accompanied or unaccompanied, and
screened to the appropriate standard is authorized
for carriage.

For Property 4.5, the decomposition is then the following:

(4.5.1), (4.5.2), (4.5.3), (4.5.4), (4.5.5) � (4.5)

3Here, the term dangerous object is used to denote any dangerous device
or weapon that is likely to be introduced on board an aircraft.

Here, the notation used (numbering of Annex 17 for the
identified security properties) and the decomposition obtained
allow us to establish a certain traceability with the normative
documents. In addition, it is obvious that by following this
decomposition we can easily analyze the impact of a particular
security property over the entire regulatory system, which is
particularly helpful when investigating the effects of changes
from one amendment to another.

Nevertheless, this kind of decomposition does not necessar-
ily imply that the satisfaction of the sub-properties is sufficient
to guarantee the satisfaction of the fundamental ones. For
instance, there may be some omissions or hidden assumptions
(made during the drafting process) in the regulation. Thus, one
way of determining the correctness and completeness of the
regulation is to prove the derivability of each decomposition
(see Section IV-B).

2) Doc 2320: When extending the analysis to the Doc 2320
(European) standard, we noticed that the structure of the docu-
ment is mainly organized according to the different categories
of prevention described in Chapter 4 of Annex 17. However,
the difference between Doc 2320 and Annex 17 resides in the
formulation of the security properties: either new properties
are added, or the Annex 17 properties are reformulated (but
convey the same information), or made more precise (and
sometimes more restrictive), or decomposed into further sub-
properties, or simply omitted (in which case, we assume that
the international standard still prevails).

For example, in Doc 2320, Property 4.5.1 of Annex 17 is de-
composed into two security properties described respectively
in Paragraph 5.2.1 and 5.2.2:

5.2.1 Accompanied hold baggage is searched by hand or
screened with conventional x-ray equipment before
being loaded into an aircraft.

5.2.2 Unaccompanied hold baggage is screened with Explo-
sive Device Detection System (EDS) or is searched by
hand supplemented with Trace Detection Equipment.

IV. VALIDATION

A. Model structure

In [6], we shown that to properly capture the meaning of
the identified security properties, we also have to model the
environment that they intend to regulate, together with the
integrity constraints that it entails. The hierarchies determined
for the subjects being regulated are represented by a Focal
model, where each subject is a species. The representation
and functions of each species are left undefined (the modeled
regulations are quite abstract). For example, the Focal model
obtained for baggage is given in Figure 1 (where each node is
a species and each arrow is an inheritance relation s.t. A ← B
means species B inherits from A).

From Section III-B, it can be observed that each category
of prevention targets a specific class of subjects according to
their intentions and capabilities. Thus, in order to reflect the
decomposition obtained during the regulation analysis phase,
we proposed in [6] a formal model where each category of
prevention is represented by a species named adequately to



cabinBaggage

basicBaggage

holdBaggage

originatingHoldBaggage transferHoldBaggage

Fig. 1. Hierarchy for baggage.

ensure traceability. The general model structure obtained for
both standards (Annex 17 and Doc 2320) is given in Figure 2,
where the Focal specification corresponding to Annex 17 is
represented with dashed nodes. The species airsidePersons,
ordinaryPassengers, specialPassengers and baggage model the
airport environment by introducing the set domain constraints
and associations for the identified subjects. They provide
the vocabulary necessary for the expression of the security
properties. The categories of prevention are afterwards orga-
nized hierarchically according to the subjects they regulate
and the dependencies between the security properties. For
instance, the security properties related to hold baggage are
formalized in species a17property4 5 which, as can be seen,
only extends the part of the environment that it regulates.
For Annex 17, the theorems establishing the validation of the
regulation are specified in species annex17. The Doc 2320
specification is obtained by extending the Annex 17 model for
each correspondence between the two standards. In addition,
refinement proofs are inserted to ensure that the Doc 2320
security properties are not less restrictive than their Annex 17
counterparts. Finally, the validation of the Doc 2320 regulation
is established in species doc2320.

airsidePersons

a17property4_2

ordinaryPassengers

a17property4_4

specialPassengers

baggage

a17property4_5 a17property4_7

a17property4_1

annex17

d2320property2

d2320property4 d2320property5

d2320property4_1

doc2320

Fig. 2. Structure for Annex 17 and Doc 2320.

B. Correctness and completeness

In this section, we present the different analyses performed
on the formal specifications produced in order to establish the
correctness and completeness of the regulations considered.
In this context, by correctness we mean that the preventive

security measures imply the fundamental ones; for example,
that Properties 4.2, 4.4, 4.5 and 4.7 imply Property 4.1. By
completeness, we mean that the preventive security measures
are sufficient to establish the fundamental ones, i.e. no ad-
ditional assumptions are required to prove the corresponding
correctness theorems. In this section, we will detail an example
showing that the regulations considered are, in a way, not com-
plete. It should also be noted that correctness/completeness
theorems do not ensure the absence of contradictions in the
regulations (which was not in the objectives of the EDEMOI
project), even if we can provide some feasible solutions (see
Section IV-C).

1) An example in Annex 17: As an example, we de-
scribe the proof of the correctness theorem for hold baggage,
regulated by Property 4.5. According to the decomposition
obtained for Property 4.5 (see Section III-B), the security mea-
sures prescribed in Annex 17 for hold baggage can guarantee
that hold baggage loaded into a departing aircraft does not
contain any unauthorized dangerous objects. When building
the corresponding proof, we discovered that an assumption
has to be made for this decomposition to be justifiable. To
highlight this hidden assumption, we need to consider how
the concerned security properties were formalized:

2) (Property 4.5.1): The security Property 4.5.1, formalized
in species a17property4 5, is the following:

property property 4 5 1 : all s in self, all l in ol,
ol set!member (l, !originatingHoldLuggage (s)) −>
ol!loaded (l) −> ol!screened (l);

where s represents a particular instance of species
a17property4 5 and l an item of originating hold baggage.
Here, it can be noticed that this formula follows exactly the
text describing Property 4.5.1 in Section III-B. The security
property 4.5.4 is formalized in a similar way, except that
transfer hold baggage coming from secure destinations may
not be subjected to screening before being loaded into an
aircraft.

3) (Property 4.5.2): Since the security property 4.5.2 af-
fects both originating and transfer hold baggage, it is formal-
ized in species holdBaggage (see Figure 1) as follows:

property property 4 5 2 : all hl in self,
!loaded (hl) −> !secure (hl);

where hl represents an item of hold baggage. This property
states that if hold baggage is loaded into an aircraft then
it is considered to have been protected from unauthorized
interference (here represented by the boolean function secure).

4) (Property 4.5.3): The security property 4.5.3 describes
the reconciliation process that needs to be performed to
ensure that hold baggage is not transported alone, except
in special circumstances. This reconciliation can only take
place when boarding is closed and no other passengers are
accepted for travel. The following property, defined in species
a17property4 5, corresponds to the formalization obtained for
originating hold baggage (a similar property is defined for
transfer hold baggage):



property property 4 5 3a : all s in self, all a in ac,
all l in ol, ac set!member (a, !departureAircraft (s)) −>
!onboardOriginating (l, a, s) −>
!boarding closed (a, s) and
(!is unaccompaniedOLuggage (l, a, s) and
ol!additional screening (l) or
!is accompaniedOLuggage (l, a, s));

where a is a departing aircraft and l an item of originating
hold baggage. This property describes that originating hold
baggage is loaded into an aircraft only when boarding is closed
and it has been identified as accompanied, or unaccompanied
and screened to the appropriate level. The constraint induced
by additional screening on unaccompanied hold baggage is
specified in species holdbaggage as follows:

property inv additional screening : all hl in self,
!additional screening (hl) −> !screened (hl);

where hl is an item of hold baggage.

5) (Property 4.5.5): The security property 4.5.5 specifies
that hold baggage is authorized for carriage only if there
is evidence that it has been identified as accompanied or
unaccompanied, and screened to the appropriate standard. The
following property is specified in species a17property4 5 for
originating hold baggage:

property property 4 5 5a : all s in self, all a in ac,
all l in ol, ac set!member (a, !departureAircraft (s)) −>
!onboardOriginating (l, a, s) −>
!oLuggageMeetCriteria (l, a, s) −>
!boarding closed (a, s) −> ol!authorized for carriage (l);

where a is a departing aircraft, l an item of originating
hold baggage, and where Proposition oLuggageMeetCriteria
encapsulates the verifications mentioned above. A similar
property is defined for transfer hold baggage.

6) (Property 4.5): From the previous security properties,
we can then try to prove the following correctness theorem
for Property 4.5:

theorem property4 5 : all s in self, all a in ac,
ac set!member (a, !departureAircraft (s)) −>
(all o in do,

do set!member (o, !dangerousObjectsInHold (a, s)) −>
do!is authorized (o)) and

(all o in wp,
wp set!member (o, !weaponsInHold (a, s)) −>
wp!is authorized (o))

where s is a particular instance of species a17property4 5,
a an aircraft, wp a weapon and do a dangerous object.

Using the declarative-like proof language of Focal (which
uses the underlying automated theorem prover Zenon; see
Section II-C), the proof begins by skolemizing and flattening
the goal statement as follows:

proof:
<1>1 assume s in self a in ac o in do

H1: ac set!member (a, !departureAircraft (s))
H2: do set!member (o,

!dangerousObjectsInHold (a, s))
prove do!is authorized (o) . . .

<1>2 assume s in self a in ac o in wp
H1: ac set!member (a, !departureAircraft (s))
H2: wp set!member (o, !weaponsInHold (a, s))

prove wp!is authorized (o) . . .
<1>3 qed;

Here, we have to deal with two specific cases. Since the
proof is similar for both parts, we only consider the one
derived for dangerous objects. In addition, according to the
definition of dangerousObjectsInHold, the dangerous object o
can either belong to an item of originating or transfer hold
baggage. Consequently, there are the two following cases:

proof:
<1>1 . . .

<2>1 assume l in ol
H3: do set!member (o,

ol!get dangerousObjects (l))
H4: ol set!member (l,

!originatingHoldLuggage (s))
H5: ol!loaded (l)
H6: ol set!member (l, olac set!loadedLuggage

(a, !loadedOriginating (s)))
prove do!is authorized (o) . . .

<2>2 . . .
<2>3 qed by <2>1, <2>2, <1>:H2, do set!union1,

ol set!dangerousObjects1, olac set!loadedLuggage1,
olac set!holdLuggage2, ol set!subset2,
tfl set!dangerousObjects1, tflac set!loadedLuggage1,
tfl set!equal1, tflac set!holdLuggage2,
!inv OLuggageAircraft, !inv TLuggageAircraft,
!onboardOLuggage1, !onboardTfLuggage1,
ol set!equal1, tfl set!subset2, ol set!subset2
def !dangerousObjectsInHold

<1>2 . . .
<1>3 qed;

Levels <2>1 and <2>2 correspond to the subgoals gen-
erated respectively for originating and transfer hold bag-
gage. Level 2<3> specifies how these two subgoals are
used to prove Level <1>1 (by . . . def clause). Intuitively,
the introduction of Hypotheses H3 to H6 in the context of
Subgoal <2>1 (similar hypotheses are used for <2>2) results
from the fact that if the object o belongs to the set of dangerous
objects placed on board an aircraft, then there certainly exists
a specific item of originating hold baggage (here identified
as l) to which it belongs.

If we now try to prove Subgoal <2>1 w.r.t. the current
hypotheses and the security properties defined previously, we
notice that the following assumption has to be made for the
proof to be completed:



property invariant secure : all hl in self,
!secure (hl) and !authorized for carriage (hl) −>
(all o in wp,

wp set!member (o, !get weapons (hl)) −>
wp!is authorized (o)) and

(all o in do,
do set!member (o, !get dangerousObjects (hl)) −>
do!is authorized (o));

This property states that if hold baggage has been pro-
tected from unauthorized interference and is authorized for
carriage then it is considered to only contain dangerous
objects/weapons that have been authorized. Under this as-
sumption, the proof of Subgoal <2>1 is built as follows:

proof:
<1>1 . . .

<2>1 assume l in ol
H3: do set!member (o,

ol!get dangerousObjects (l))
H4: ol set!member (l,

!originatingHoldLuggage (s))
H5: ol!loaded (l)
H6: ol set!member (l, olac set!loadedLuggage

(a, !loadedOriginating (s)))
prove do!is authorized (o)

<3>1 prove
!oLuggageMeetCriteria (l, a, s) and
!boarding closed (a, s)

by <2>:H5, <1>:H1, <2>:H4,
<2>:H6, !property 4 5 1,
!property 4 5 3a
def !onboardOriginating,
!oLuggageMeetCriteria

<3>2 prove ol!secure (l) and
ol!authorized for carriage (l)

by <2>:H5, <3>1, <1>:H1,
<2>:H6, ol!property 4 5 2,
!property 4 5 5a
def !onboardOriginating

<3>3 qed by <3>2, <2>:H3,
ol!invariant secure

<1>2 . . .
<1>3 qed;

As can be seen, Subgoal <2>1 is proved in three steps: at
Level <3>1, we show that, by applying H1, H4, H5 and H6
w.r.t. the security properties 4.5.1 and 4.5.3a, we can deduce
that the originating hold baggage l has been identified as
accompanied or unaccompanied, screened to the appropriate
level (here represented by oLuggageMeetCriteria), and that
boarding is closed for the flight on which it has been checked-
in; at Level <3>2, we establish that the originating hold
baggage l is considered to be secure and has been authorized
for carriage, by applying Hypotheses H1, H5 and H6 w.r.t.
the security properties 4.5.2 and 4.5.5a, under the assumption
of Level <3>1; finally, at Level <3>3, we conclude that the
dangerous object o has been authorized by applying Hypoth-
esis H3 to Property invariant secure, under the assumption of
Level <3>2. Subgoal <2>2 is proved in a similar way but
involves Property 4.5.4 instead of Property 4.5.1.

By systematically exploring the decomposition obtained for
each of the different categories of prevention considered, we
managed to identify some other hidden assumptions, which
must not be considered as failures of the regulation but more as
implicit security requirements. Thus, this validation addresses
a certain form of completeness for the regulation, where every
security requirement has been made explicit.

7) A refinement of Doc 2320: We consider the example of
Section III-B where Property 4.5.1 of Annex 17 is intended
to be refined by Properties 5.2.1 and 5.2.2 of Doc 2320.
This introduces new kinds of theorems (and proofs), that
can be called refinement theorems (proofs). These theorems
are mainly correctness theorems but are specific in the sense
that they ensure a given regulation of a sub-level is not less
restrictive than regulations of higher levels. Here, in our ex-
ample, this means that the Doc 2320 security properties 5.2.1
and 5.2.2 must not invalidate Property 4.5.1 of Annex 17.
Thus, we must prove the following theorem:

theorem refinement 5 2 1 :
!d2320 5 2 1 −> !d2320 5 2 2 −> !property 4 5 1

proof : by . . ., ol!inv handSearchXray,
ol!inv handSearchTDE EDS, ol!inv additionalScreening
def !d2320 5 1 1, !d2320 5 2 1, !d2320 5 2 2,
!property 4 5 1, !onboardOriginating;

It can be observed that by only providing the appropriate
properties and definitions (here, we only provide the main
properties and definitions necessary to understand the proof),
Zenon manages to discharge the proof obligation automat-
ically. Moreover, as shown below, the proof construction is
fairly comprehensible and therefore, does not need to be
detailed using the declarative proof language (seen previously
with the proof of Property 4.5 of Annex 17). To understand
the underlying proof, we need to consider how the concerned
security properties are formalized. Properties 5.2.1 and 5.2.2
are respectively formalized as follows:

property d2320 5 2 1 : all s in self, all l in ol,
all a in ac, ac set!member (a, !departureAircraft (s)) −>
!onboardOriginating (l, a, s) −>
!boarding closed (a, s) −>
!is accompaniedOLuggage (l, a, s) −>
ol!handSearched (l) or ol!xrayed (l);

property d2320 5 2 2 : all s in self, all l in ol,
all a in ac, ac set!member (a, !departureAircraft (s)) −>
!onboardOriginating (l, a, s) −>
!boarding closed (a, s) −>
!is unaccompaniedOLuggage (l, a, s) −>
ol!eds (l) or ol!handSearchedTDE (l);

where s represents a particular instance of species
d2320property5 (see Figure 2), l an item of originating hold
baggage and a an aircraft. Since hand search or conventional
x-ray are considered to be traditional screening methods, the
following property is introduced in species holdBaggage2320
(which is a refined version of species holdBaggage):

property inv handSearchXray : all hl in self,
!handSearched (hl) or !xrayed (hl) −> !screened (hl);



where hl refers to an item of hold baggage. A similar prop-
erty (inv handSearchTDE EDS) is defined for hold baggage
subjected to EDS or hand search with trace detection equip-
ment. However, these are considered to be additional screening
techniques (see Property 4.5.3 of Annex 17). Finally, the
correlation between Property 4.5.1 and Properties 5.2.1/5.2.2
is established through the use of the following property:

property d2320 5 1 1 : all s in self, all a in ac,
all l in ol, ac set!member (a, !departureAircraft (s)) −>
!onboardOriginating (l, a, s) −>
!boarding closed (a, s) and
(!is unaccompaniedOLuggage (l, a, s) or
!is accompaniedOLuggage (l, a, s));

It simply states that originating hold baggage is placed
on board an aircraft only if it has been identified as being
accompanied or unaccompanied.

C. Consistency

As said in Section IV-B, the correctness/completeness the-
orems we identified and proved do not guarantee the absence
of contradictions in the regulation. One way to tackle this
problem is to try to derive False from the set of security
properties and to let Zenon work on it for a while. If the
proof succeeds then we have a contradiction, otherwise we can
only have a certain level of confidence. This approach may
seem rather naive but appears quite pertinent when used to
identify the correlation between the several security measures
according to specific attack scenarios. The idea is to falsify an
existing hypothesis or to add an inconsistent hypothesis and
to study its impact over the entire regulation, i.e. where the
potential conflicts are located and which security properties are
concerned. For example, let us suppose we add the following
property to our formalization:

property secure not screen : all s in self, all l in ol,
ol set!member (l, !originatingHoldLuggage (s)) −>
ol!secure (l) −> not (ol!screened (l));

Even if it is not in direct contradiction with any of the prop-
erties defined previously, it still introduces an inconsistency in
the specification for a given context (see below). Now, let us
consider the following facts to model a particular instance of
our scenario:

property fact1 : all s in self,
ol set!member (!my baggage, !originatingHoldLuggage (s));

property fact2 : ol!loaded (!my baggage);

In this context, Zenon is able to identify the anomaly by
successfully proving False (using Properties 4.5.1 and 4.5.2).
In addition, whenever such proof succeeds, Zenon helps the
user to locate the source of the inconsistency (the conflicting
security properties) by providing the list of properties (and
definitions) not used to complete the proof (since the user can
provide more properties than necessary). This approach might
be coupled with complementary methods, such as deviational
techniques [11], in order to cater for external factors (which
can still influence the regulation content) using flaw hypothe-
ses to explore security violations.

D. Development

In the validation of this formalization (10000 lines of Focal
code, 150 species, 200 proofs, 2 years to be completed),
Zenon allowed us to discharge most of the previous proofs
automatically (about 90% of them). Actually, Zenon also
succeeded in completing the other proofs automatically but
beyond the default timeout (set to 3 min in Focal). This
tends to show that Zenon is quite appropriate when dealing
with abstract specifications (no representation and very few
definitions). The development is freely available (sending a
mail to the authors) and can be compiled with the latest version
of Focal (0.3.1).

V. CONCLUSION

1) Summary: One way to improve security is to produce
high quality standards. The formal models of Annex 17 and
Doc 2320 regulations, as well as their validation partially
described in this paper, tend to bring an effective solution
in the specific framework of airport security. Regarding the
validation part, Zenon, the automated theorem prover of the
Focal environment, appeared quite appropriate discharging
most of our proofs automatically. In particular, it allowed us to
complete the correctness/completeness proofs, as well as the
refinement proofs resulting from the addition of Doc 2320. It
also helped us to identify hidden assumptions, which seemed
to be implicit in the corresponding regulation documents.
In addition, this prover could be used in each step of the
development: in the prototyping phase, providing a set of prop-
erties and definitions (to be used by Zenon) to be convinced
that a given lemma is correctly formulated; in the finalizing
phase, providing more detailed proofs to obtain more readable
specifications together with a reasonable compilation time.

2) Related work: Currently, models of the same regulations,
by D. Bert and his team, are under development using B [12]
in the framework of the EDEMOI project. In the near future,
it could be interesting to compare the two formal models
(in Focal and B) rigorously in order to understand if and
how the specification language but also the reasoning support
influence the model itself. Very close to the EDEMOI project
is the SAFEE project [13], funded by the 6th Framework
Programme of the European Union (FP6) and which aims to
use similar techniques for security but on board the aircraft.
Regarding similar specifications in Focal, we must keep in
mind that the compiler is rather recent (4/5 years at most) and
efforts have been essentially provided, by R. Rioboo, to build
a Computer Algebra library, which is currently the standard
library of Focal. However, some more applicative formaliza-
tions are under development like certified implementations of
access control models [14] by M. Jaume and C. Morisset.

3) Future work: As said in Section IV-B, we plan to use
Zenon as a tool to build attack scenarios which, at least in this
context, appear to be quite interesting for official certification
authorities. In particular, this will allow us to study the impact
of a given security measure property (or sub-property) over
the entire regulation system. In the same way, we would
like to integrate a test suite into this formalization using



an automatic generation procedure (working from a Focal
specification) and using stubs for abstract functions (i.e. only
declared). Such a procedure is currently work in progress, by
C. Dubois and M. Carlier, but is still limited (to universally
quantified propositions) and needs to be extended to be applied
to our development. We also plan to produce UML diagrams
automatically generated from the Focal specifications and
which is an effective solution to interact with competent
organizations (ICAO, ECAC). Such a tool has been developed
by J. F. Étienne but has to be completed to deal with all the
features of Focal.

REFERENCES

[1] R. Laleau and M. Lemoine, Eds., International Workshop on Regula-
tions Modelling and their Validation and Verification (REMO2V), in
conjunction with Conference on Advanced Information Systems Engi-
neering (CAiSE). Luxembourg (Grand-Duchy of Luxembourg): Presses
Universitaires de Namur, June 2006.

[2] T. I. C. A. Organization, Annex 17 to the Convention on International
Civil Aviation, Security - Safeguarding International Civil Aviation
against Acts of Unlawful Interference, Amendment 11, Nov. 2005.

[3] T. E. C. A. Conference, Regulation (EC) N◦2320/2002 of the European
Parliament and of the Council of 16 December 2002 establishing
Common Rules in the Field of Civil Aviation Security, Dec. 2002.

[4] T. Focal. D. Team, Focal, version 0.3.1, CNAM/INRIA/LIP6, May
2005, available at: http://focal.inria.fr/.

[5] T. EDEMOI. Project, 2003,
http://www-lsr.imag.fr/EDEMOI/.

[6] D. Delahaye, J.-F. Étienne, and V. Viguié Donzeau-Gouge, “Certifying
Airport Security Regulations using the Focal Environment,” in Formal
Methods (FM), ser. Lecture Notes in Computer Science (LNCS), vol.
4085. Hamilton, Ontario (Canada): Springer, Aug. 2006, pp. 48–63.

[7] C. Dubois, T. Hardin, and V. Viguié Donzeau-Gouge, “Building Certified
Components within Focal,” in Symposium on Trends in Functional
Programming (TFP), vol. 5. Munich (Germany): Intellect (Bristol,
UK), Nov. 2004, pp. 33–48.

[8] T. Cristal. Team, Objective Caml, version 3.09.1, INRIA, Jan. 2006,
Available at: http://caml.inria.fr/.

[9] T. Coq. D. Team, Coq, version 8.0, INRIA, Jan. 2006,
Available at: http://coq.inria.fr/.

[10] L. Lamport, “How to Write a Proof,” American Mathematical Monthly,
vol. 102, no. 7, pp. 600–608, Aug. 1995.

[11] T. Srivatanakul, J. A. Clark, and F. Polack, “Effective Security Require-
ments Analysis: HAZOP and Use Cases,” in Information Security :
7th International Conference, ser. Lecture Notes in Computer Science
(LNCS), vol. 3225. Palo Alto (CA, USA): Springer, Jan. 2004, pp.
416–427.

[12] J. R. Abrial, The B Book, Assigning Programs to Meanings. Cambridge
(UK): Cambridge University Press, 1996, iSBN 0521496195.

[13] T. SAFEE. Project, 2004,
http://www.safee.reading.ac.uk/.

[14] M. Jaume and C. Morisset, “Formalisation and Implementation of
Access Control Models,” in Information Assurance and Security (IAS),
International Conference on Information Technology (ITCC). Las Vegas
(USA): IEEE CS Press, Apr. 2005, pp. 703–708.


