
MODMED

WP1/D1: Preliminary Definition of a Domain Specific
Specification Language

Version 0.10
November 10, 2016

MODMED (ANR-15-CE25-0010) 2015-2018

Yoann Blein LIG Author
Lydie du Bousquet LIG Reviewer
Roland Groz LIG Reviewer
Yves Ledru LIG Reviewer
Fabrice Bertrand BlueOrtho Reviewer
Arnaud Clère MinMaxMedical Reviewer

2

Contents

1 Introduction 4

2 The ExactechGPS-TKA Case Study 4
2.1 Properties identified . 5
2.2 Analysis . 6

3 Related Work on Property Specification 7
3.1 Examples . 8

4 Basic Concepts: Event, Traces and Environment 9

5 Simple Expressions 10

6 DSL Definition 11
6.1 Syntax . 11
6.2 Informal semantics . 12

6.2.1 Events . 12
6.2.2 Patterns . 12
6.2.3 Scopes . 12

6.3 Semantics . 13
6.3.1 Preliminary Definitions . 14
6.3.2 Satisfaction Relation . 14

7 Examples 15

8 Future Work 17

References 17

3

1 Introduction

Medical Cyber-Physical Systems (MCPS) provide support for complex medical interventions.
Despite their increasing complexity, the MCPS industry is reluctant to use formal methods
[Lee08]. Fortunately, these systems can be easily instrumented to provide execution traces
enabling us to understand their use and behavior in the field. Based on this observation, the
MODMED initiative strive at developing an environment for partial Model-Based Verification of
execution traces for MCPS.

The properties to verify can be written in a specification language and analyzed automatically
on a corpus of execution traces. Such an environment presents several interests to MCPS
manufacturers:

• validating the correctness and the robustness of an implementation when used in real
conditions,

• validating the hypotheses made on the environment and the conditions of use of a device,
and

• understanding the way a device is used in a perspective of product enhancement.

One of the challenges faced by MODMED is to make formal requirements writable by software
engineers with no training in formal methods and readable by domain experts. For this purpose,
we are developing a high-level language dedicated to property specification for MCPS. This
document presents a preliminary definition of this DSL (Domain Specific Language) based on
the ExactechGPS-TKA case study, which is further detailed in [BBdB+16].

2 The ExactechGPS-TKA Case Study

This case study focuses on a computer assisted navigation system for total knee arthroplasty:
ExactechGPS-TKA, designed BlueOrtho company for Exactech implant manufacturer. Total
knee arthroplasty is a surgical procedure that involves replacing parts of the knee joint with
a prosthesis. The purpose of this operation is to relieve the pain of an arthritic knee, while
maintaining or improving its functionality. To install the prosthesis, it is necessary to cut
off part of the tibia and the femur. ExactechGPS-TKA helps the surgeon achieve these cuts
precisely through the guided installation of cutting guides in the right position. This position is
automatically determined by combining the target objective given by the surgeon and the spatial
reconstruction of the scene established by the system. This system is currently used worldwide.

ExactechGPS-TKA is a turnkey solution that provides both the knee prosthesis and the guidance
system. The latter consists of several components: a machine able to communicate with the
surgeon via a touch screen, a three dimensions camera, a set of trackers visible by the camera
and a set of mechanical instruments for attaching trackers and cutting guides to the tibia and
the femur.

The installation of cutting guides is carried out through a succession of steps to be performed by
the surgeon. The nature of these steps and the order in which they are performed are, to some
extent, configurable. This configuration, called profile, is determined according to the surgeon’s
operating preferences. In every case, the sequence of steps takes the following macroscopic form:
sensor calibration, acquisition of anatomical points, checking acquisitions, adjustment of target
parameters, and finally, cutting guides setting.

4

ExactechGPS-TKA is equipped with a recording system for execution trace. For each performed
surgery, the corresponding execution trace is sent to BlueOrtho. To this day, the company
collected a corpus of about 7,000 traces of surgeries that took place in real conditions. Each trace
consists of an event log, a hierarchical description of the stages of surgery containing the acquired
and calculated values, and all the screenshots performed at each stage. This set of information
allows understanding the course of a surgery and possibly identifying failures.

2.1 Properties identified

As expected with a medical cyber-physical system, the range of properties collected in the
ExactechGPS-TKA case study is very wide. In this section, we present a set of properties that
we identified as representative. Here is the list of the 15 properties in no particular order:

Property 1: The trace contains a step “redo acquisitions”.

The “redo acquisition” step allows the surgeon to correct his previous acquisition. It is not
part of the standard procedure flow and, therefore, interesting to detect.

Property 2: The temperature of the camera stays within [l, u].

If used in proper conditions, the camera temperature should not deviate from the range
where its precision is guaranteed.

Property 3: The distance between pairs of hip centers is less than d.

This property asserts that the algorithm computing the hip center is stable.

Property 4: The distance between the hip center and the knee center is greater than d.

A violation of this property could reveal an abnormal positioning of the patient or the
sensors.

Property 5: If the medial malleolus is further than the lateral one, a warning is issued.

A violation of this property could reveal that the 3D camera was installed on the wrong
side of the patient.

Property 6: The user never skips a screen.

The surgeon is expected to spend sufficient time to appreciate the information showed at
each step of the procedure.

Property 7: The acquisition of a point succeeds if and only if the probe is stable.

If the surgeon moves the probe during an acquisition, it should not be accepted.

Property 8: The protocol “redo acquisitions” proposes only already performed acquisitions.

The system should not offer the user to redo acquisitions that were never performed.

Property 9: Detecting a new tracker produces a dialog asking for replacement confirmation.

Property 10: The state TrackersConnection is unreachable until the camera is connected.

The system should not reach a state dependant on the camera until the camera is connected.

Property 11: A replaced tracker is not used until it is registered again.

If a tracker is replaced, the system should not try to use it until it is registered again.

5

Property 12: The action “previous” cancels the current points cloud acquisition.

Acquiring a points cloud takes a few seconds and can be cancelled. In this case, the current
acquisition should not succeed.

Property 13: All the necessary trackers are seen before entering the state TrackersVisibCheck.

To proceed, the system requires a set of trackers depending on the profile in use. All these
trackers should be seen at least once before entering the state TrackersVisibCheck. Note
that if we go back to the beginning and change the profile, the trackers already seen do not
have to be seen again.

Property 14: On the trackers connection screen, a tracker is shown if and only if it is necessary.

Only the set of required trackers is shown to the user.

Property 15: In the state TrackersConnection, not detecting any new tracker for 2 minutes
produces an error message.

2.2 Analysis

A property can be characterized by the number of different events it involves and whether it:

• is parametric, i.e. it involves event parameters,
• is temporal, i.e. it constrains the order of two or more occurrences of events,
• applies to a restricted scope of the trace,
• has geometric predicates on data,
• has GUI predicates on screenshots, and
• involves physical-time.

Table 1 summarizes the characteristics of each property according to the previous criteria.

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of event types 1 1 1 2 3 2 2 2 2 2 3 3 4 2 4
Parametric 3 3 3 3 3 3 3 3 3 3 3 3

Temporal 3 3 3 3 3 3 3 3 3

Restricted scope 3 3 3 3 3 3

Geometric predicate 3 3 3 3

GUI predicate 3

Physical time 3 3

Table 1: Characterization of the selected properties

First, we observe that nearly all properties involve at least two different types of events and that
the parameters of the events are heavily used. This confirms that the properties are not simple
invariance constraints and there is a need for an expressive language to formalize them.

The key observation is that most of the properties are temporal. Therefore, the DSL should
focus on the temporal relations between events. Non-temporal properties (invariance, occurrence,
. . .) should be expressible as degenerate cases. Scope restrictions are also common and should
be coupled with temporal relations in the DSL.

6

Then, we notice that one third of the properties relies on geometry or GUI predicates. Thus the
language should provide a mechanism to call external predicates defined by other means, such as
a Python or C++ library.

Finally, despite our expectations, the physical time is rarely involved in the properties. From
this observation, we reconsidered the priorities of the language and postponed time handling to a
future version.

3 Related Work on Property Specification

Property specification is an important challenge in software verification and much work has
been dedicated to specification logics and languages. Most of them are designed to be verified
automatically and exhaustively through techniques such as model checking. Their expressiveness
must be carefully limited so that they remain decidable in such frameworks. However, by
trading exhaustiveness, runtime verification allows verifying properties formulated in a much
more expressive specification language. Over the last decade, many specification languages for
runtime verification have emerged. They are based on formalisms such as state machines, regular
expressions, temporal logic, grammars or rule systems.

The linear temporal logic (LTL) [Pnu77] is widely used as a reference formalism in runtime
verification. Most notably, Bauer et al. proposed alternatives LTL semantics for finite traces
that are suitable for monitoring [BLS10]. However, LTL’s syntax and typical minimality make
the formulation of concise and correct specifications difficult, even for specialists. Salt [BLS06]
is a domain independent abstraction over LTL’s syntax providing specification patterns, nested
temporal scopes and real-time constructs. Although it is much more convenient to use than LTL,
it does not support parametric events and, therefore, is not suitable for the MODMED project.
Many other LTL extensions handling parametric events have been proposed such as counting
quantifiers [MJBF14] or SQL-like aggregation [BKMZ15], but they do not attempt to facilitate
property specification.

Rule-based systems also received a lot of attention. They feature the most powerful logics and
parametric monitoring. One of the most notable proposals is Ruler [BRH10] where specifications
are written as conditional rules. In its simplest form, a rule-based specification consists of a set
of rules of the form:

condition1 , . . . , conditionn =⇒ action

When all the conditions of a rule are respected, the right-hand side action is executed, typically
updating the state of the monitoring system. Ruler’s poor efficiency led to the development
of LogFire [Hav15], an internal Scala DSL attempting to achieve efficient monitoring for the
rule-based approach. Despite these efforts, LogFire performance is still behind the state-of-
the-art runtime verification system Mop [MJG+12] by several orders of magnitude. We also
notice that rule-based systems favor an unnatural control flow in specifications, making them
arguably difficult to understand. Because of this, and because of the efficiency issues in underlying
implementations, we dismissed ruled-based systems for property specification.

Our approach was mostly influenced by the work of Dwyer et al. on specification patterns
[DAC99]. They identified a set of frequently used patterns in real-world specifications and
elaborated a pattern system, much like design patterns in software engineering. Basically, a
pattern is a requirement (e.g., an event triggers another one) coupled with a temporal scope
(e.g., after a certain event). Dwyer et al. defined an LTL translation for each and every couple

7

requirement/scope. The pattern system enables inexperienced users to write formal specifications
in a natural language. However, it suffers from a limited expressiveness mostly due to the fact
that scopes cannot be nested. Extending the system with a new requirement or scope requires
writing the LTL translation for every possible couple containing the new construct, which is
inconvenient and error-prone. Taha et al. shown that even the original pattern translations are
inconsistent [TJD+15].

3.1 Examples

In this section we demonstrate the specification of some of the selected properties with two
powerful formalisms handling parametric events: the FO-LTLf , a first-order discrete time linear
temporal logic with finite-trace semantics proposed by Reger and Rydeheader [RR15], and the
Quantified Event Automata (QEA) formalism from Barringer et al [BFH+12]. We assume that
both formalisms are extended to support basic arithmetic and boolean expressions.

Property 12: The action “previous” cancels the current points cloud acquisition.

• FO-LTLf :

�(AcquisitionCancel =⇒ ¬AcquisitionSuccess U AcquisitionBegin)

• QEA:

start

AcquisitionCancel()

AcquisitionBegin()

AcquisitionSuccess()

Property 2: The temperature of the camera stays within [l, u].

• FO-LTLf :
∀t1.�(Temp(t1) =⇒ l ≤ t1 ≤ u)

• QEA:

start

Temp(t1) if l ≤ t1 ≤ u

Property 6: The user never skips a screen.

• FO-LTLf :

∀s.∀ts1.�(Enter(s, ts1) =⇒ ¬(∃ts2.♦(ActionNext(ts2) ∧ ts2 − ts1 < δ)))

8

• QEA:

start
Enter(s, ts1)

ActionNext(ts2)
if ts2 − ts1 < δ

∀s.∀ts1

Property 9: Detecting a new tracker produces a dialog asking for replacement confirmation.

• FO-LTLf :

∀t.�((RegisterTracker(t) ∧ ♦TrackerDetected(t))

=⇒ ♦(TrackerDetected(t) ∧ ♦DialogConfirmReplace(t)))

• QEA:

start
RegisterTracker(t)

TrackerDetected(t)

DialogConfirmReplace(t)

∀t.

Although those two formalisms allow specifying the properties concisely, they have several
drawbacks. Both of them are difficult to write and to understand, especially when one or several
quantifiers are involved in a specification. Also, they require to explicitly specify the parameters
of each event, even if they are not relevant to the current property. This is not practical since
real-world events tends to have many parameters. We also notice that the FO-LTLf is even
harder to understand because of its cryptic notations whereas QEA’s graphical representation
helps on this matter. However, QEA specifications do not convey the intent of the properties.

4 Basic Concepts: Event, Traces and Environment

We use X → Y and X ⇁ Y to denote sets of total and partial functions from X to Y , respectively.
We write maps (partial functions) as [x0 7→ v0, . . . , xi 7→ vi] and the empty map as []. We note
m[x 7→ v] the map which is the same as m except that the mapping for x is updated to refer to v:

m[y 7→ v](x) =

{
v if x = y

m(x) otherwise

Let Val be the set of values that includes:

• atomic litterals: booleans, integers, strings and floating-point numbers,
• homogeneous sequence of values, and
• records of named values (F ⇁ Val where F is a set of field names).

We are also considering the addition of an atomic type to represent dates and times in a future
version.

9

An event is characterized by a name and a set of named parameters. Formally an event is defined
as a pair:

Event = Σ× (P ⇁ Val)

where Σ and P are finite sets of event names and parameter names, respectively. For convenience
we define the two following projections on e = 〈n, ps〉: name(e) = n and parameters(e) = ps.

Finally, an environment is a map from variables to values:

Env = Var ⇁ Val

where Var is a set of variable names.

5 Simple Expressions

It is useful to be able to manipulate simple to moderately complex expressions in properties,
while delegating more complex expressions to an external language (Python, C++, . . .) through
a Foreign Function Interface (FFI). Since simple expressions are orthogonal to the definition of
the DSL for property specification, we will first introduce them in this dedicated section.

Let Expr be the set of expressions that can derived from the grammar in Figure 1.

〈expr〉 ::= 〈literal〉
| 〈unop〉 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉 (variable lookup)
| 〈expr〉 ‘.’ 〈ident〉 (record field access)
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ (sequence indexing)
| 〈ident〉 ‘(’ 〈args〉 ‘)’ (external function call)

〈unop〉 ::= ‘not’ | ‘-’

〈binop〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘>’ | ‘>=’ | ‘!=’ | ‘and | ‘or’ | ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’

〈args〉 ::= [(〈expr〉 ‘,’)* 〈expr〉]

〈ident〉 ::= (_ | 〈letter〉) (_ | 〈letter〉 | 〈digit〉)*

〈letter〉 ::= ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’

〈digit〉 ::= ‘0’ | . . . | ‘9’

〈literal〉 ::= usual set of boolean, integer, floating-point and string literals

Figure 1: Syntax of expressions

To formalize expression evaluation, we will use the judgement form η ` e ↓ v, read as “in the
environment η, expression e reduces to value v”. Evaluation of basic expressions (literals, unary
expressions and binary expressions) is defined as usual and not detailed here. The interesting
rules are the following:

10

η(x) = v

η ` x ↓ v E-Lookup

η ` e ↓ r r(p) = v

η ` e.p ↓ v E-FieldAccess

η ` e1 ↓ s η ` e2 ↓ i si = v

η ` e1[e2] ↓ v
E-Indexing

η ` f(e1, . . . , en) ↓ v E-ExtCall

6 DSL Definition

The proposed DSL is an event-based formalism with a natural language syntax. The proposed
DSL is mostly influenced by the specification patterns proposed by Dwyer et al [DAC99]. However,
we extended their expressiveness significantly by allowing them to be combined and nested, and
to operate on parametrized events.

6.1 Syntax

The syntax of the proposed DSL is described by the grammar in Figure 2.

〈prop〉 ::= 〈pattern〉
| 〈scope〉 ‘,’ 〈prop〉
| ‘forall’ 〈ident〉 ‘in’ 〈expr〉, 〈prop〉
| ‘(’ 〈prop〉 ‘)’
| ‘not’ 〈prop〉
| 〈prop〉 (‘and’ | ‘or’ | ‘equiv’ | ‘implies’) 〈prop〉

〈scope〉 ::= (‘after’ | ‘before’) (‘each’ | ‘first’ | ‘last’) 〈event〉
| ‘between’ 〈event〉 ‘and’ 〈event〉
| ‘since’ 〈event〉 ‘until’ 〈event〉

〈pattern〉 ::= ‘absence_of’ 〈event〉
| ‘occurrence_of’ 〈expr〉 〈event〉
| 〈event〉 ‘followed_by’ 〈event〉
| 〈event〉 ‘enables’ 〈event〉
| 〈event〉 ‘disables’ 〈event〉

〈event〉 ::= 〈ident〉 [〈ident〉 [‘where’ 〈expr〉]]

Figure 2: Syntax of the proposed DSL

The following expressions are typical examples that can be derived from this grammar:

• after each A, B followed_by C

• after first A a where a.x != 0, absence_of B or absence_of C"

11

• before last A a, forall v in a.set, occurrence_of 2 B where b.p == v

• between A a and B b where a.v == b.v, not (C enables D)

6.2 Informal semantics

6.2.1 Events

Events are designed simply by their type such as in absence_of A where A is the type of the
event. Additionally, an event can be bound to a variable x like in A x . In this case, it is also
possible to add a condition on the event thanks to the where construct: A x where c . This
expression describes the set of events having the type A and respecting the condition c when
bound to the variable x.

6.2.2 Patterns

A pattern is the mandatory basic component of a property. It is impossible to derive a property
that does not contain at least one pattern. They describe and rule the occurrences of events in
the current scope of the trace.

The first unary pattern is occurrence_of n A , where n is optional, and which requires the
occurrence of at least n events A in the current scope. If n is not specified, it defaults to 1, as
expected. The second unary pattern is simply the dual: absence_of A .

There are also three binary patterns: A followed_by B , A enables B and A disables B .
A followed_by B holds if and only if every occurrence of the event A is eventually followed by
an occurrence of the event B. Conversely, A enables B holds if and only if each occurrence of
the event B is eventually preceded by an occurrence of the event A. Therefore, an occurrence
of the event A enables the event B to occur. Finally, A disables B prevents the event B from
occuring after an occurence of the event A. Examples of pattern satisfaction for various traces
are given in Table 2.

〈A〉 〈B〉 〈A,A,C,B〉 〈B,A〉 〈A,B,A〉

absence_of A 5 3 5 5 5

occurrence_of A 3 5 3 3 3

occurrence_of 2 A 5 5 3 5 3

A followed_by B 5 3 3 5 5

A enables B 3 5 3 5 3

A disables B 3 3 5 3 5

Table 2: Examples of pattern satisfaction for various traces

6.2.3 Scopes

Scopes are a mean to designate the range of a trace where a property should hold. They are
delimited by optionally bound events. If a delimiter event is bound, it will be made available
in the environment under the bound name for the current property. For instance, the property
after first A v where v.x != 0, P will evaluate P on the scope starting after the first event A

12

with a non-null x parameter, and in a environment where the value of the variable v is this first
event.

The scopes we propose can be classified according to their arity, i.e. the number of events types
they expect. Unary scopes, illustrated Figure 3, are the basic building blocks.

after each B

after last B

after first B

before each B

before last B

before first B

A B A A B A

Figure 3: Graphical representation of the unary scopes

Note that all scopes are strict, i.e., delimiter events are not included in the interval they define.
Although most of them are trivial, the “each” variants may describe multiple intervals. They
happen to be powerful combinators.

An important consequence of the grammar definition is that scopes can be nested. For instance,
after last A, after each B, P will hold if and only if P holds after each B occurring after the
last occurrence of A. Nesting scopes properly allows defining more abstract scopes such as the
two binary scopes illustrated Figure 4.

since A until B

between A and B

A B A A B A

Figure 4: Graphical representation of the binary scopes

Binary scopes can be defined solely in terms of the previous unary scopes and, therefore, could be
omitted from the language definition. However, we decided to include them considering that their
definitions are difficult to read (see subsubsection 6.3.2), and to allow for further optimizations
in their implementation.

Although we considered adding a “global” scope, we chose not to, since a property without scope
restriction already implicitly refers to the whole trace.

6.3 Semantics

Before defining the satisfaction relation between a trace, an environment and a property, we need
to introduce a couple of helpful functions.

13

6.3.1 Preliminary Definitions

The predicate matches : Event × Σ× Env × Var × Expr → B holds when an event matches a
description and is defined as follows:

matches(e, E, η, x, c) = (name(e) = E) ∧ (η[x 7→ parameters(e)] ` c ↓ true)

For instance, given the event e = 〈E, [p 7→ 1]〉, the proposition

matches(e, E, [y 7→ 1], x, x.p ≤ y)

holds since the name of e is indeed E and the guard can be reduced to true in the environment
η′ = [y 7→ 1][x 7→ parameters(e)] = [x 7→ [p 7→ 1], y 7→ 1]:

η′(x) = [p 7→ 1]

η′ ` x ↓ [p 7→ 1]
E-Lookup

[p 7→ 1](p) = 1

η′ ` x.p ↓ 1
E-FieldAccess

η′(y) = 1

η′ ` y ↓ 1
E-Lookup

1 ≤ 1

η′ ` x.p ≤ y ↓ true

Let Occ = {each, first, last}. The function occurrences : Trace×Σ×Env×Var×Expr×Occ →
P(N) returns the indexes of the events of a trace matching a description and an occurrence:

occurrences(τ, E, η, x, c, o) =


S if o = each

{min S} if o = first and S 6= ∅
{max S} if o = last and S 6= ∅
∅ otherwise

where S = {i | match(τi, E, η, x, c)}

The function elems : A∗ → P(A) converts a finite sequence into a set:

elems((sn)n∈D) = {si | i ∈ D}

Finally, we define the counting existential quantifier ∃≥nx.ϕ where n ∈ N and read as “there exist
at least n different x such that ϕ”. Formally it can be defined as follows:

∃≥nx.ϕ ≡ |{x | ϕ}| ≥ n

6.3.2 Satisfaction Relation

Properties are evaluated on pairs composed of a finite trace and an environment. The satisfaction
relation between a trace τ , an environment η and a property p is the smallest relation (τ, η) � p
satisfying the following rules:

14

〈τ, η〉 2 P
〈τ, η〉 � not P

S-Neg

〈τ, η〉 � P1 ∨ 〈τ, η〉 � P2

〈τ, η〉 � P1 or P2
S-Conj

η ` e ↓ S ∀v ∈ elems(S).〈τ, η[x 7→ v]〉 � P
〈τ, η〉 � forall x in e, P

S-Forall

η ` ne ↓ n ∃≥ni.matches(τi, E, η, x, c)

〈τ, η〉 � occurrence_of ne E x where c
S-Occ

∀i ∈ occurrences(τ, E, η, x, c, o).〈(τj)j>i, η[x 7→ parameters(τi)]〉 � P
〈τ, η〉 � after o E x where c, P

S-After

∀i ∈ occurrences(τ, E, η, x, c, o).〈(τj)j<i, η[x 7→ parameters(τi)]〉 � P
〈τ, η〉 � before o E x where c, P

S-Before

We say that a trace τ satisfies a property P when (τ, []) � P .

The previous rules allow to define the additional logical operators as follows:

• P1 and P2 ≡ not (not P1 or not P2)
• P1 implies P2 ≡ not P1 or P2

• P1 equiv P2 ≡ (P1 implies P2) and (P2 implies P1)

The additional temporal operators are defined as follows:

• absence_of E ≡ not (occurrence_of E)

• E1 followed_by E2 ≡ after last E1, occurrence_of E2

• E1 enables E2 ≡ before first E2, occurrence_of E1

• E1 disables E2 ≡ after first E1, absence_of E2

• between E1 and E2, P ≡ P1 and P2, where
P1 = after first E1, before first E2, P
P2 = after each E2, P1

• since E1 until E2, P ≡ (between E1 and E2, P) and
(after last E2, after first E1, P)

7 Examples

The following list of examples illustrates the idiomatic expression of the studied properties in the
proposed DSL.

Property 1: The trace contains a step “redo acquisitions”.
occurrence_of Enter e where e.state == 'redo '

15

Property 2: The temperature of the camera stays within [l, u].
absence_of Temp t where not (a <= t.t1 and t.t1 < b)

Property 3: The distance between pairs of hip centers is less than d.
after each HipCenter h1 ,

absence_of HipCenter h2 where dist(h1.point , h2.point) >= d

where dist : R3 × R3 → R is an external function returning the euclidean distance between
two points.

Property 4: The distance between the hip center and the knee center is greater than d.
(after each HipCenter hc , absence_of KneeCenter kc

where dist(hc.point , kc.point) <= d)
and
(after each KneeCenter kc, absence_of HipCenter hc

where dist(hc.point , kc.point) <= d)

where dist is the same function than the one presented in the previous property. We notice
some form of redundancy in the specification that motives the need for a construct capturing
unordered events:
absence_of collection(HipCenter hc, KneeCenter kc)

where dist(hc.point , kc.point) <= d

Property 5: If the medial malleolus is further than the lateral one, a warning is issued.
(after each MedialMalleolus m, LateralMalleolus l where

norm(l.point) < norm(m.point) followed_by WarningMalleolusInverted)
and
(after each LateralMalleolus l, MedialMalleolus m where

norm(l.point) < norm(m.point) followed_by WarningMalleolusInverted)

where norm : R3 → R is an external function returning the norm of a vector. With a
construction similar to the previous property:
each collection(MedialMalleolus m, LateralMalleolus l) where

norm(l.point) < norm(m.point) followed_by WarningMalleolusInverted

Property 6: The user never skips a screen.
after each Enter e, absence_of ActionNext a where a.ts - e.ts <= d

Property 7: Acquire a point succeed if and only if the probe is stable.
AcquirePoint ap where isStable(ap.cloud) followed_by PointAcquired

where isStable : P(R3)→ B is an external predicate that holds if the given set of points is
stable. Issue: the events AcquirePoint and PointAcquired might not be correlated.

Property 8: The protocol “redo acquisitions” proposes only already performed acquisitions.
before each Redo r, forall o in r.options ,

occurrence_of Enter e where e.state == o

Property 9: Detecting a new tracker produces a dialog asking for replacement confirmation.
after each RegisterTracker rt,

TrackerDetected td where td.type == rt.type followed_by
DialogConfirmReplace dc where dc.type == rt.type

16

Property 10: The state TrackersConnection is unreachable until the camera is connected.
CameraConnected enables Enter e where e.state == 'TrackersConnection '

Property 11: A replaced tracker is not used until it is registered again.
since (Unregister u) until (Register r where r.id == u.id),

absence_of (Activate a where a.id == u.id)

Property 12: The action “previous” cancels the current points cloud acquisition.
since AcquisitionCancel until AcquisitionBegin ,

absence_of AcquisitionSuccess

Property 13: All the necessary trackers are seen before entering the state TrackersVisibCheck.
before each TrackersVisibCheck tvc , forall t in tvc.trackers ,

occurrence_of TrackerDetected td where td.type == t

Property 14: On the trackers connection screen, a tracker is shown if and only if it is necessary.
since SearchTrackers st1 until SearchTrackers ,

absence_of ScreenshotTrackersConnection stc
where stc.trackers != st1.requiredTrackers

Property 15: In the state TrackersConnection, not detecting any new tracker for 2 minutes
produces an error message.

This property cannot be expressed in the proposed language yet.

8 Future Work

The language proposed here is a preliminary definition of the MODMED DSL. As such, it is still
incomplete and likely to change significantly.

In particular, the missing important features identified so far are the support for physical time and
a construction for capturing unordered events (collections) to avoid redundancy in specifications.
Gruhn and Laue proposed interesting patterns [GL06] for these two features.

The trace format used here implies that each event has a well defined structure. Obtaining such
a trace will require to process untyped execution traces according to a set of event descriptions.
We will develop a library and a description format to do so.

Finally, we also want to study the practical interest of adding non-strict scope delimiters.

References

[BBdB+16] Fabrice Bertrand, Yoann Blein, Lydie du Bousquet, Roland Groz, Yves Ledru, and
Arnaud Clère. MODMED WP6/D1: Requirements Analysis. Technical report,
BlueOrtho, LIG, MinMaxMedical, 2016.

[BFH+12] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Ry-
deheard. Quantified event automata: Towards expressive and efficient runtime
monitors. In FM 2012: Formal Methods - 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings, pages 68–84, 2012.

17

[BKMZ15] David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. Monitoring
of temporal first-order properties with aggregations. Formal Methods in System
Design, 46(3):262–285, 2015.

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT - structured assertion
language for temporal logic. In Formal Methods and Software Engineering, 8th
International Conference on Formal Engineering Methods, ICFEM 2006, Macao,
China, November 1-3, 2006, Proceedings, pages 757–775, 2006.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL semantics
for runtime verification. J. Log. Comput., 20(3):651–674, 2010.

[BRH10] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for
run-time monitoring: from eagle to ruler. J. Log. Comput., 20(3):675–706, 2010.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 1999 International
Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22,
1999., pages 411–420, 1999.

[GL06] Volker Gruhn and Ralf Laue. Patterns for timed property specifications. Electr.
Notes Theor. Comput. Sci., 153(2):117–133, 2006.

[Hav15] Klaus Havelund. Rule-based runtime verification revisited. STTT, 17(2):143–170,
2015.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In 11th IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008), 5-7 May 2008, Orlando, Florida, USA, pages 363–369, 2008.

[MJBF14] Ramy Medhat, Yogi Joshi, Borzoo Bonakdarpour, and Sebastian Fischmeister.
Accelerated runtime verification of LTL specifications with counting semantics.
CoRR, abs/1411.2239, 2014.

[MJG+12] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu.
An overview of the MOP runtime verification framework. STTT, 14(3):249–289,
2012.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pages 46–57, 1977.

[RR15] Giles Reger and David E. Rydeheard. From first-order temporal logic to parametric
trace slicing. In Runtime Verification - 6th International Conference, RV 2015
Vienna, Austria, September 22-25, 2015. Proceedings, pages 216–232, 2015.

[TJD+15] Safouan Taha, Jacques Julliand, Frédéric Dadeau, Kalou Cabrera Castillos, and Bilal
Kanso. A compositional automata-based semantics and preserving transformation
rules for testing property patterns. Formal Asp. Comput., 27(4):641–664, 2015.

18

	Introduction
	The ExactechGPS-TKA Case Study
	Properties identified
	Analysis

	Related Work on Property Specification
	Examples

	Basic Concepts: Event, Traces and Environment
	Simple Expressions
	DSL Definition
	Syntax
	Informal semantics
	Events
	Patterns
	Scopes

	Semantics
	Preliminary Definitions
	Satisfaction Relation

	Examples
	Future Work
	References

