
MODMED

WP1/D2 & WP1/D3: Complete Definition of a Domain Specific
Specification Language

Version 1.1
May 3, 2018

MODMED (ANR-15-CE25-0010) 2015-2018

Yoann Blein LIG Author
Lydie du Bousquet LIG Reviewer
Roland Groz LIG Reviewer
Yves Ledru LIG Reviewer
Fabrice Bertrand BlueOrtho Reviewer
Arnaud Clère MinMaxMedical Reviewer

2

Contents

1 Introduction 4

2 The ExactechGPS-TKA Case Study 4
2.1 Properties identified . 5
2.2 Analysis . 6

3 WP1/D2: ParTraP Definition 7
3.1 Basic Concepts: Event, Traces and Environment 7
3.2 Simple Expressions . 8
3.3 DSL Definition . 9

3.3.1 Syntax . 9
3.3.2 Informal semantics . 9
3.3.3 Semantics . 12

4 WP1/D3: Examples of specifications 14

References 16

3

1 Introduction

Medical Cyber-Physical Systems (MCPS) provide support for complex medical interventions.
Despite their increasing complexity, the MCPS industry is reluctant to use formal methods
[Lee08]. Fortunately, these systems can be easily instrumented to provide execution traces
enabling us to understand their use and behavior in the field. Based on this observation, the
MODMED initiative strive at developing an environment for partial Model-Based Verification of
execution traces for MCPS.

The properties to verify can be written in a specification language and analyzed automatically
on a corpus of execution traces. Such an environment presents several interests to MCPS
manufacturers:

• validating the correctness and the robustness of an implementation when used in real
conditions,

• validating the hypotheses made on the environment and the conditions of use of a device,
and

• understanding the way a device is used in a perspective of product enhancement.

One of the challenges faced by MODMED is to make formal requirements writable by software
engineers with no training in formal methods and readable by domain experts. For this purpose,
we are developing a high-level language dedicated to property specification for MCPS. This
document presents a preliminary definition of ParTraP (Parametric Trace Property language)
based on the ExactechGPS-TKA case study, which is further detailed in [BBdB+16].

2 The ExactechGPS-TKA Case Study

This case study focuses on a computer assisted navigation system for total knee arthroplasty:
ExactechGPS-TKA, designed BlueOrtho company for Exactech implant manufacturer. Total
knee arthroplasty is a surgical procedure that involves replacing parts of the knee joint with
a prosthesis. The purpose of this operation is to relieve the pain of an arthritic knee, while
maintaining or improving its functionality. To install the prosthesis, it is necessary to cut
off part of the tibia and the femur. ExactechGPS-TKA helps the surgeon achieve these cuts
precisely through the guided installation of cutting guides in the right position. This position is
automatically determined by combining the target objective given by the surgeon and the spatial
reconstruction of the scene established by the system. This system is currently used worldwide.

ExactechGPS-TKA is a turnkey solution that provides both the knee prosthesis and the guidance
system. The latter consists of several components: a machine able to communicate with the
surgeon via a touch screen, a three dimensions camera, a set of trackers visible by the camera
and a set of mechanical instruments for attaching trackers and cutting guides to the tibia and
the femur.

The installation of cutting guides is carried out through a succession of steps to be performed by
the surgeon. The nature of these steps and the order in which they are performed are, to some
extent, configurable. This configuration, called profile, is determined according to the surgeon’s
operating preferences. In every case, the sequence of steps takes the following macroscopic form:
sensor calibration, acquisition of anatomical points, checking acquisitions, adjustment of target
parameters, and finally, cutting guides setting.

4

ExactechGPS-TKA is equipped with a recording system for execution trace. For each performed
surgery, the corresponding execution trace is sent to BlueOrtho. To this day, the company
collected a corpus of about 7,000 traces of surgeries that took place in real conditions. Each trace
consists of an event log, a hierarchical description of the stages of surgery containing the acquired
and calculated values, and all the screenshots performed at each stage. This set of information
allows understanding the course of a surgery and possibly identifying failures.

2.1 Properties identified

As expected with a medical cyber-physical system, the range of properties collected in the
ExactechGPS-TKA case study is very wide. In this section, we present a set of properties that
we identified as representative. Here is the list of the 15 properties in no particular order:

Property 1: The trace contains a step “redo acquisitions”.

The “redo acquisition” step allows the surgeon to correct his previous acquisition. It is not
part of the standard procedure flow and, therefore, interesting to detect.

Property 2: The temperature of the camera stays within [l, u].

If used in proper conditions, the camera temperature should not deviate from the range
where its precision is guaranteed.

Property 3: The distance between pairs of hip centers is less than d.

This property asserts that the algorithm computing the hip center is stable.

Property 4: The distance between the hip center and the knee center is greater than d.

A violation of this property could reveal an abnormal positioning of the patient or the
sensors.

Property 5: If the medial malleolus is further than the lateral one, a warning is issued.

A violation of this property could reveal that the 3D camera was installed on the wrong
side of the patient.

Property 6: The user never skips a screen.

The surgeon is expected to spend sufficient time to appreciate the information showed at
each step of the procedure.

Property 7: The acquisition of a point succeeds if and only if the probe is stable.

If the surgeon moves the probe during an acquisition, it should not be accepted.

Property 8: The protocol “redo acquisitions” proposes only already performed acquisitions.

The system should not offer the user to redo acquisitions that were never performed.

Property 9: Detecting a new tracker produces a dialog asking for replacement confirmation.

Property 10: The state TrackersConnection is unreachable until the camera is connected.

The system should not reach a state dependant on the camera until the camera is connected.

Property 11: A replaced tracker is not used until it is registered again.

If a tracker is replaced, the system should not try to use it until it is registered again.

5

Property 12: The action “previous” cancels the current points cloud acquisition.

Acquiring a points cloud takes a few seconds and can be cancelled. In this case, the current
acquisition should not succeed.

Property 13: All the necessary trackers are seen before entering the state TrackersVisibCheck.

To proceed, the system requires a set of trackers depending on the profile in use. All these
trackers should be seen at least once before entering the state TrackersVisibCheck. Note
that if we go back to the beginning and change the profile, the trackers already seen do not
have to be seen again.

Property 14: On the trackers connection screen, a tracker is shown if and only if it is necessary.

Only the set of required trackers is shown to the user.

Property 15: In the state TrackersConnection, not detecting any new tracker for 2 minutes
produces an error message.

2.2 Analysis

A property can be characterized by the number of different events it involves and whether it:

• is parametric, i.e. it involves event parameters,
• is temporal, i.e. it constrains the order of two or more occurrences of events,
• applies to a restricted scope of the trace,
• has geometric predicates on data,
• has GUI predicates on screenshots, and
• involves physical-time.

Table 1 summarizes the characteristics of each property according to the previous criteria.

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of event types 1 1 1 2 3 2 2 2 2 2 3 3 4 2 4
Parametric 3 3 3 3 3 3 3 3 3 3 3 3

Temporal 3 3 3 3 3 3 3 3 3

Restricted scope 3 3 3 3 3 3

Geometric predicate 3 3 3 3

GUI predicate 3

Physical time 3 3

Table 1: Characterization of the selected properties

First, we observe that nearly all properties involve at least two different types of events and that
the parameters of the events are heavily used. This confirms that the properties are not simple
invariance constraints and there is a need for an expressive language to formalize them.

The key observation is that most of the properties are temporal. Therefore, the DSL should
focus on the temporal relations between events. Non-temporal properties (invariance, occurrence,
. . .) should be expressible as degenerate cases. Scope restrictions are also common and should
be coupled with temporal relations in the DSL.

6

[
{ "time": 1, "id": "TrackerDetected", "type": "F" },
{ "time": 4, "id": "SearchTrackers", "types": ["P", "F"] },
{ "time": 6, "id": "TrackerDetected", "type": "P" },
{ "time": 9, "id": "StartAcquisitions" }

]

Figure 1: Example of JSON input trace

Then, we notice that one third of the properties relies on geometry or GUI predicates. Thus the
language should provide a mechanism to call external predicates defined by other means, such as
a Python or C++ library.

Finally, despite our expectations, the physical time is rarely involved in the properties. However,
we still believe that supporting it would be useful for applications beyond this case study.

3 WP1/D2: ParTraP Definition

3.1 Basic Concepts: Event, Traces and Environment

The traces are formatted as JSON1 files, where the top-level element is an array of records,
representing events. Each event is composed of a mandatory name and time keys, and can have
other parameters. Figure 1 shows a simple example of such trace. In this section, we formalize
this format after introducing some notations.

We use X → Y and X ⇁ Y to denote sets of total and partial functions from X to Y , respectively.
We write maps (partial functions) as [x0 7→ v0, . . . , xi 7→ vi] and the empty map as []. We note
m[x 7→ v] the map which is the same as m except that the mapping for x is updated to refer to v:

m[y 7→ v](x) =

{
v if x = y

m(x) otherwise

If Z is a set, let Z∗ be the set of finite sequences of elements in Z.

Equipped with these notations, we may now define the traces content and format. The set of
values is the smallest set Val such that:

1. atomic literals (booleans, integers, strings and floating-point numbers) are values;

2. if v1, . . . , vn are values, then the sequence (vk)
n
k=1 is a value;

3. if v1, . . . , vn are values and f1, . . . , fn are names, then the map, or record, [f0 7→ v0, . . . , fi 7→
vi] is a value.

An environment is a map from variable names to values:

Env = Var ⇁ Val,

where Var is a set of variable names.
1https://tools.ietf.org/html/rfc7159

7

https://tools.ietf.org/html/rfc7159

An event is characterized by a name and a set of named parameters. Formally an event is defined
as a pair:

Event = Σ× (P ⇁ Val),

where Σ and P are finite sets of event names and parameter names, respectively. Note that
definition permits events to have the same name and yet different parameters. This provide
more flexibility with the input traces and allows, for instance, to have optional parameters.
For convenience, we define the two following projections on events: name(〈n, ps〉) = n and
param(〈n, ps〉) = ps.

Finally, a trace τ = (ei, ti)
n
1=i is an element of (Event× N)∗, where (ti)

n
1=i is a non-decreasing

sequence representing time, and

untime((e1, t1) . . . (en, tn)) = e1 . . . en.

3.2 Simple Expressions

It is useful to be able to manipulate simple to moderately complex expressions in properties,
while delegating more complex expressions to an external language (Python, C++, . . .) through
a Foreign Function Interface (FFI). Since simple expressions are orthogonal to the definition of
the DSL for property specification, we will first introduce them in this dedicated section.

Let Expr be the set of expressions that can derived from the grammar in Figure 2.

〈expr〉 ::= 〈literal〉
| 〈unop〉 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉 (variable lookup)
| 〈expr〉 ‘.’ 〈ident〉 (record field access)
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ (sequence indexing)
| 〈ident〉 ‘(’ 〈args〉 ‘)’ (external function call)

〈unop〉 ::= ‘not’ | ‘-’

〈binop〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘>’ | ‘>=’ | ‘!=’ | ‘&&’ | ‘||’ | ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’

〈args〉 ::= [(〈expr〉 ‘,’)* 〈expr〉]

〈ident〉 ::= (_ | 〈letter〉) (_ | 〈letter〉 | 〈digit〉)*

〈letter〉 ::= ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’

〈digit〉 ::= ‘0’ | . . . | ‘9’

〈literal〉 ::= usual set of boolean, integer, floating-point and string literals

Figure 2: Syntax of expressions

To formalize expression evaluation, we will use the judgement form η ` e ↓ v, read as “in the
environment η, expression e reduces to value v”. Evaluation of basic expressions (literals, unary
expressions and binary expressions) is defined as usual and not detailed here. The interesting

8

rules are the following:

η(x) = v

η ` x ↓ v E-Lookup

η ` e ↓ r r(p) = v

η ` e.p ↓ v E-FieldAccess

η ` e1 ↓ s η ` e2 ↓ i si = v

η ` e1[e2] ↓ v
E-Indexing

η ` e1 ↓ v1 . . . η ` en ↓ vn η ` f(v1, . . . , vn) ↓ v
η ` f(e1, . . . , en) ↓ v E-ExtCall

The rule E-Lookup resolves variables names to their values in the current environment, E-
FieldAccess accesses the value associated a key in a record, and E-Indexing addresses the
element at a given index in a sequence. The last rule, E-ExtCall, handles external function
calls with a call-by-value strategy.

3.3 DSL Definition

The proposed DSL is an event-based formalism with a natural language syntax. The proposed
DSL is mostly influenced by the specification patterns proposed by Dwyer et al [DAC99]. However,
we extended their expressiveness significantly by allowing them to be combined and nested, and
to operate on parametrized events.

3.3.1 Syntax

The syntax of the proposed DSL is described by the grammar in Figure 3.

The following expressions are typical examples that can be derived from this grammar:

• after each A, B followed_by C

• after first A a where a.x != 0, absence_of B or absence_of C"

• before last A a, forall v in a.set, occurrence_of 2 B where b.p == v

• between A a and B b where a.v == b.v, not (C preceded_by D)

• within 2min before first A, B prevents C for 2s

3.3.2 Informal semantics

Events Events are designed simply by their type such as in absence_of A where A is the type
of the event. Additionally, an event can be bound to a variable x like in A x. In this case, it is
also possible to add a condition on the event thanks to the where construct: A x where c. This
expression describes the set of events having the type A and respecting the condition c when
bound to the variable x.

It is also possible to designate an unordered collections of events with the set construct: set(E1
x1, ..., En xn) where c. This event will be triggered at the last event of any set of events
E1...En that respects the guard c when the events E1...En are bound to x1...xn, respectively.

9

〈prop〉 ::= 〈pattern〉
| 〈scope〉 ‘,’ 〈prop〉
| (‘forall’ | ‘exists’) 〈ident〉 ‘in’ 〈expr〉 ‘,’ 〈prop〉
| ‘given’ (‘each’ | ‘first’ | ‘last’) 〈event〉 ‘,’ 〈prop〉
| ‘(’ 〈prop〉 ‘)’
| ‘not’ 〈prop〉
| 〈prop〉 (‘and’ | ‘or’ | ‘equiv’ | ‘implies’) 〈prop〉

〈scope〉 ::= [‘within’ 〈duration〉] (‘after’ | ‘before’) (‘each’ | ‘first’ | ‘last’) 〈event〉
| ‘between’ 〈event〉 ‘and’ 〈event〉
| ‘since’ 〈event〉 ‘until’ 〈event〉

〈pattern〉 ::= ‘absence_of’ 〈event〉
| ‘occurrence_of’ 〈expr〉 〈event〉
| 〈event〉 ‘followed_by’ 〈event〉 [‘within’ 〈duration〉]
| 〈event〉 ‘preceded_by’ 〈event〉 [‘within’ 〈duration〉]
| 〈event〉 ‘prevents’ 〈event〉 [‘for’ 〈duration〉]

〈event〉 ::= 〈ident〉 [〈ident〉 [‘where’ 〈expr〉]]
| ‘set’ ‘(’ 〈ident〉 [〈ident〉] (‘,’ 〈ident〉 [〈ident〉])* ‘)’ [‘where’ 〈expr〉]

〈duration〉 ::= 〈expr〉 (‘ms’ | ‘s’ | ‘min’ | ‘h’ | ‘d’)

Figure 3: Syntax of the proposed DSL

Patterns A pattern is the mandatory basic component of a property. It is impossible to derive
a property that does not contain at least one pattern. They describe and rule the occurrences of
events in the current scope of the trace.

The first unary pattern is occurrence_of n A, where n is optional, and which requires the
occurrence of at least n events A in the current scope. If n is not specified, it defaults to 1, as
expected. The second unary pattern is simply the dual: absence_of A.

There are also three binary patterns: A followed_by B, A preceded_by B and A prevents B.
A followed_by B holds if and only if every occurrence of the event A is eventually followed by
an occurrence of the event B. Conversely, A preceded_by B holds if and only if each occurrence
of the event A is eventually preceded by an occurrence of the event B. Finally, A prevents B
prevents the event B from occurring after an occurrence of the event A. Examples of pattern
satisfaction for various traces are given in Table 2.

〈A〉 〈B〉 〈A,A,C,B〉 〈B,A〉 〈A,B,A〉

absence_of A 5 3 5 5 5

occurrence_of A 3 5 3 3 3

occurrence_of 2 A 5 5 3 5 3

A followed_by B 5 3 3 5 5

B preceded_by A 3 5 3 5 3

A prevents B 3 3 5 3 5

Table 2: Examples of pattern satisfaction for various traces

10

Scopes Scopes are a mean to designate the range of a trace where a property should hold.
They are delimited by optionally bound events. If a delimiter event is bound, it will be made
available in the environment under the bound name for the current property. For instance, the
property after first A v where v.x != 0, P will evaluate P on the scope starting after the
first event A with a non-null x parameter, and in a environment where the value of the variable v
is this first event.

The scopes we propose can be classified according to their arity, i.e. the number of events types
they expect. Unary scopes, illustrated Figure 4, are the basic building blocks.

after each B

after last B

after first B

before each B

before last B

before first B

A B A A B A

Figure 4: Graphical representation of the unary scopes

Note that all scopes are strict, i.e., delimiter events are not included in the interval they define.
Although most of them are trivial, the “each” variants may describe multiple intervals. They
happen to be powerful combinators.

An important consequence of the grammar definition is that scopes can be nested. For instance,
after last A, after each B, P will hold if and only if P holds after each B occurring after
the last occurrence of A. Nesting scopes properly allows defining more abstract scopes such as
the two binary scopes illustrated Figure 5.

since A until B

between A and B

A B A A B A

Figure 5: Graphical representation of the binary scopes

Binary scopes can be defined solely in terms of the previous unary scopes and, therefore, could
be omitted from the language definition. However, we decided to include them considering that
their definitions are difficult to read (see section 3.3.3), and to allow for further optimizations in
their implementation.

Although we considered adding a “global” scope, we chose not to, since a property without scope
restriction already implicitly refers to the whole trace.

Timed Variants Unary scopes and binary patterns may be additionally constrained with a
duration expressed in common time units.

Both unary scopes can be prefixed with the within keyword and a duration expression, like
in within 2ms before each A, absence_of B. The inner property only has to hold for the

11

given duration starting immediately at the delimiter event for the after scope, or ending exactly
at the delimiter event in the before case. In the previous example, the event B cannot occur
during the two milliseconds preceding any occurrence of an event A.

Binary patterns, built upon unary scopes, may also be extended with a suffix and a duration
expression. For instance, the response pattern becomes bounded in time: A followed_by B
within 2s.

Quantifiers The trace format allows compound values in event parameters. In particular, they
can be lists of values. The language allows exploiting them through quantified properties.

The universal quantifier takes the following form: forall a in L, P, where a is an identifier
and L is a list. Unsurprisingly, for each value in L, P must be satisfied in an environment where a
is bound to that value. The existential quantifier (exists) is also defined as usual.

Since quantified properties are themselves properties, they can be arbitrarily nested. In particular,
it is convenient to use a quantifier inside a scope property, so that the list quantified over can be
a parameter of the event delimiting the scope.

Event Selection The only way to extract the parameters of an event so far is to bind the
event in a scope. However, the associated restriction of the trace range might not be wanted.

The given expression takes the same syntactic form as scopes, i.e. suffixed with an occurrence
specifier (first, last or each) and an event descriptor. It wraps another property that will be
evaluated in a environment extended with the selected event. In the each case, the property
must be true for all events matching the event descriptor. Like scopes, a property constructed
with given will be true if no events match the descriptor.

3.3.3 Semantics

Preliminary Definitions If (ei) is an untimed trace, (σk, xk) is a sequence of event names
and variable names, c is a condition expression and η is an environment, let

Mall((ei)
m
i=1, (σk, xk)

n
k=1, c, η) = {(ik)nk=1 | name(eik) = σk ∧ η′ ` c ↓ true},

where
η′ = η[x1 7→ param(ei1), . . . , xn 7→ param(ein)], (1)

be the set of index sequences of (ei) such that each event sequence matches the event names
(σk), and respects the condition c when evaluated in the environment η extended with the event
parameters. Put simply, Mall computes all the event sets matching an event set description for a
given trace and a given environment.

Let S be a finite set of sequences of equal length. We write minS (resp. maxS) to denote
the minimal (resp. maximal) element of S in colexicographic order, which is a variant of the
lexicographical order obtained by comparing sequences from the right to the left. If o is an
occurrence specifier, i.e. an element of {first, last, each},

select(o, S) =

S if o = each

{min S} if o = first and S 6= ∅
{max S} if o = last and S 6= ∅
∅ otherwise

12

restricts S according to the occurrence specifier o. The colexicographic ensures that the first
element is the event set with the earliest last event and that the last element is the event set with
the latest first event. This order is total for S, which guarantees the existence and uniqueness of
the minimal and maximal elements.

If (ti, ei) is a trace, (σk, xk) is a sequence of event names and variable names, c is a condition
expression, η is an environment and o an occurrence specifier, let

M((ti, ei)
m
i=1, (σk, xk)

n
k=1, c, η, o) =

{(min
k
ik,max

k
ik, η

′) | (ik)nk=1 ∈ select(o,Mall((ei)
m
i=1, (σk, xk)

n
k=1, c, η))},

where η′ is defined as in (1), be the set of triplets that, for each event set matching the given
description and occurrence specifier, is composed of the beginning index of the match in the
trace, its ending index and the updated environment with the matched event parameters.

Finally, if (ei, ti) is a trace and l a natural, the function

upto((ei, ti)
n
i=1, l) = (ei, ti)

max({j|tj<l}∪n)
i=1

slices the trace (ei, ti) from its beginning and up to the time limit l.

Semantics Rules Properties are evaluated over finite traces and in a specific environment.
The satisfaction relation between a trace τ , an environment η and a property p is the smallest
relation τ �η p satisfying the following rules:

τ 2η P
τ �η not P

Neg
τ �η P1 ∨ τ �η P2

τ �η P1 or P2
Disj

η ` e ↓ L ∀v ∈ L. τ �η[x7→v] P

τ �η forall x in e, P
Forall

η ` ne ↓ n n ≤ |M(τ, (Ei, xi)
n
i=1, c, η, each)|

τ �η occurrence_of ne set(E1 x1, . . . ,En xn) where c
Occ

∀(j, k, η′) ∈M(τ, (Ei, xi)
n
i=1, c, η, o). (τi)i>k �η′ P

τ �η after o set(E1 x1, . . . ,En xn) where c, P
Aft

η` δe ↓ δ ∀(j, k, η′)∈M(τ, (Ei, xi)
n
i=1, c, η, o). upto((τi)i>k, t0+δ)�η′ P

τ �η within δe after o set(E1 x1, . . . ,En xn) where c, P
AftT

∀(j, k, η′) ∈M(τ, (Ei, xi)
n
i=1, c, η, o). τ �η′ P

τ �η given o set(E1 x1, . . . ,En xn) where c, P
Given

The rules Bef and BefT for the before scope are symmetrical to Aft and AftT, respectively,
and are omitted here. We say that a trace τ satisfies a property P when τ �[] P .

The first two rules are straightforward. The next one, Forall, handles universally quantified
properties by first evaluating the expression that represents the quantification domain, and then
evaluating the subsequent property for all values in that domain. Occ, the only non-recursive
rule, asserts the occurrence of a particular event set description by counting the number of event

13

sets that match this description in the current trace. The rules for the after scope are Aft,
and its timed variant AftT. They rely on the results of the M function to slice the trace after
the end of each event set matching the description and to update the evaluation environment.
Additionally, AftT evaluates a duration expression and slices the trace so that it lasts at most
for this duration. The rule for the given expression is the same as Aft without the range
restriction.

The previous rules allow defining the additional logical expressions with the usual identities:

• P1 and P2 ≡ not (not P1 or not P2)

• P1 implies P2 ≡ not P1 or P2

• P1 equiv P2 ≡ (P1 implies P2) and (P2 implies P1)

• exists x in e, P ≡ not (forall x in e, not P),

and the additional temporal expressions:

• absence_of E ≡ not (occurrence_of E)

• A followed_by B within δ ≡
within δ after each A, occurrence_of B

• A preceded_by B within δ ≡
within δ before each A, occurrence_of B

• A prevents B within δ ≡
within δ after each A, absence_of B

• between A and B, P ≡ after each A, before first B, P

• since A until B, P ≡
(between A and B, P) and after last A, (absence_of B implies P)

Finally, simple event descriptions are translated into event set descriptions with a single event,
unbound events are bound to the empty variable name, and omitted guards defaults to true.

4 WP1/D3: Examples of specifications

The following list of examples illustrates the idiomatic expression of the studied properties in the
proposed DSL.

Property 1: The trace contains a step “redo acquisitions”.
occurrence_of Enter e where e.state == 'redo '

Property 2: The temperature of the camera stays within [l, u].
absence_of Temp t where not (a <= t.t1 and t.t1 < b)

Property 3: The distance between pairs of hip centers is less than d.
after each HipCenter h1 ,

absence_of HipCenter h2 where dist(h1.point , h2.point) >= d

where dist : R3 × R3 → R is an external function returning the euclidean distance between
two points.

14

Property 4: The distance between the hip center and the knee center is greater than d.
absence_of set(HipCenter hc , KneeCenter kc)

where dist(hc.point , kc.point) <= d

where dist is the same function than the one presented in the previous property.

Property 5: If the medial malleolus is further than the lateral one, a warning is issued.
set(MedialMalleolus m, LateralMalleolus l) where

norm(l.point) < norm(m.point) followed_by WarningMalleolusInverted

where norm : R3 → R is an external function returning the norm of a vector.

Property 6: The user never skips a screen.
Enter prevents ActionNext for 100 ms

Property 7: Acquire a point succeed if and only if the probe is stable.
AcquirePoint ap where isStable(ap.cloud) followed_by PointAcquired

where isStable : P(R3)→ B is an external predicate that holds if the given set of points is
stable. Issue: the events AcquirePoint and PointAcquired might not be correlated.

Property 8: The protocol “redo acquisitions” proposes only already performed acquisitions.
before each Redo r, forall o in r.options ,

occurrence_of Enter e where e.state == o

Property 9: Detecting a new tracker produces a dialog asking for replacement confirmation.
after each RegisterTracker rt,

TrackerDetected td where td.type == rt.type followed_by
DialogConfirmReplace dc where dc.type == rt.type

Property 10: The state TrackersConnection is unreachable until the camera is connected.
Enter e where e.state == 'TrackersConnection ' preceded_by CameraConnected

Property 11: A replaced tracker is not used until it is registered again.
since (Unregister u) until (Register r where r.id == u.id),

absence_of (Activate a where a.id == u.id)

Property 12: The action “previous” cancels the current points cloud acquisition.
since AcquisitionCancel until AcquisitionBegin ,

absence_of AcquisitionSuccess

Property 13: All the necessary trackers are seen before entering the state TrackersVisibCheck.
before each EnterState e

where e.state == "mainCasp.TrackingConnection.TrackersVisibCheck",
given last SearchTrackers st,
forall ty in st.types ,
occurrence_of TrackerDetected td where td.ty == ty

Property 14: On the trackers connection screen, a tracker is shown if and only if it is necessary.
since SearchTrackers st1 until SearchTrackers ,

absence_of ScreenshotTrackersConnection stc
where stc.trackers != st1.requiredTrackers

15

Property 15: In the state TrackersConnection, not detecting any new tracker for 2 minutes
produces an error message.

This property cannot be expressed in the proposed language yet.

References

[BBdB+16] Fabrice Bertrand, Yoann Blein, Lydie du Bousquet, Arnaud Clère, Roland Groz,
and Yves Ledru. MODMED WP6/D1: Requirements Analysis. Technical report,
BlueOrtho, LIG, MinMaxMedical, 2016.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Barry W. Boehm, David Garlan, and
Jeff Kramer, editors, Proceedings of the 1999 International Conference on Software
Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999., pages 411–420.
ACM, 1999.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In 11th IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008), 5-7 May 2008, Orlando, Florida, USA, pages 363–369, 2008.

16

	Introduction
	The ExactechGPS-TKA Case Study
	Properties identified
	Analysis

	WP1/D2: ParTraP Definition
	Basic Concepts: Event, Traces and Environment
	Simple Expressions
	DSL Definition
	Syntax
	Informal semantics
	Semantics

	WP1/D3: Examples of specifications
	References

