
MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 1 / 25 

Generic Execution Traces Specification 
MODMED 

This document specifies a model of generic execution traces data allowing trace providers to further define 

their own event data while ensuring interoperability with a variety of generic analysis tools such as those 

developed by the MODMED project. 

Contributors 
 Function Name Partner 

Written By Coordinator Arnaud Clère MinMaxMedical 

Reviewed By Researcher Yoann Blein LIG 

Reviewed By Researcher Yves Ledru LIG 

Revisions 
What Who When 

DRAFT  Arnaud Clère 21/09/2017 

V1 Many clarifications and references, plus: 
- Use EBNF, ERE formalisms 
- Added _Integer/_Decimal/_Timestamp/_Bytes/_Types 
- Use XSD to reflect primitive types in XML Physical Model 

- CBOR Physical Model 

Arnaud Clère 13/11/2017 

V1.1 Many minor edits after 1st review, plus: 
- Separated _Null from _Text to eliminate ambiguities 
- Renamed _source_path, _source_line to just _path, _line 
- Defined _message (_format + _args), _severity_id 
- Simplified TSV+JSON and fixed a problem with JSON string "null"  
- Changed some physical models requirements to recommendations 
- Recommended ways to convey metadata about _Traces 
- Reworked redundancy elimination rules and encodings  

- Added examples 

Arnaud Clère 28/11/2017 

V1.2 Minor edits and corrections, plus: 
- Renamed _Identifier _Name to make clear unicity is not required 

- Recommended way to handle duplicate _Names 
- Added <n/> for XML _Null 

Arnaud Clère 25/01/2018 

Consortium 

   
 

Partly funded by:   



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 2 / 25 

Contents 
1. Goals ...........................................................................................................................................................4 

2. Specification ...............................................................................................................................................6 

a) Preliminary definitions ...............................................................................................................................6 

TRACEPOINT ...............................................................................................................................................6 

EVENTDATA ................................................................................................................................................6 

b) Conceptual model ......................................................................................................................................6 

_Trace     = _Sequence (* of _Event *) ; ...............................................................................6 

_Event     = _Record (* satisfying the requirements below *) ; ....................................7 

c) Logical model .......................................................................................................................................... 11 

_Data      = _Record | _Sequence | _Null | _Text ; .................................................... 11 

_Record    = ( _Name , _Data )* (* ordering MAY NOT be preserved *) ; .................. 12 

_Sequence  = _Data * ; ................................................................................................................. 12 

_Null      = (* absence of information *) ; ........................................................................ 12 

_Text      = _Character * ; ...................................................................................................... 12 

_Boolean   = "TRUE" | "FALSE" ; ............................................................................................. 13 

_Integer   = _Text (* matching [+-]?[0-9]+ *) ; ............................................................... 13 

_Decimal   = "NaN" | (""|"+"|"-") , "INFINITY" 

           | _Text (* matching [+-]?[0-9]*(.[0-9]*)?([eE][+-]?[0-9]+)? *) ; ........ 14 

_Timestamp = _Text (* matching ISO8601 format YYYY-MM-DDThh:mm:ss±hh:mm *) ; ...... 14 

_Bytes     = "0x" , _Text (* matching ([0-9a-f][0-9a-f])+ *) ; ................................ 14 

_Tag       = "#" , _Name ; ........................................................................................................ 14 

_Name      = _Text (* matching [_A-Za-z][_A-Za-z0-9]* *) ; ......................................... 14 

_Base_Type = "_Trace" | "_Event" | "_Record" | "_Sequence" | "_Null" | "_Text"  

           | "_Boolean" | "_Integer" | "_Decimal" | "_Timestamp" | "_Bytes" 

           | "_Tag" | "_Name" | "_Base_Type" | "_Type" | "_Character" ; ...... 15 

_Type      = _Base_Type  

           | _Name (* for user-defined subset of _Text with defined semantic *) ; 15 

_Character = (* a single Unicode character *) ;................................................................. 15 

d) Physical models ....................................................................................................................................... 15 

JSON ........................................................................................................................................................ 16 

TSV+JSON ................................................................................................................................................ 17 

XML .......................................................................................................................................................... 20 

CBOR ........................................................................................................................................................ 22 

3. Related Work ........................................................................................................................................... 25 

 

  



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 3 / 25 

Examples 
Example 1: TSV+JSON _Trace with data highlighted in a worksheet processing software ..................................4 

Example 2: Empty JSON _Trace ............................................................................................................................7 

Example 3: Simplistic JSON _Trace .......................................................................................................................7 

Example 4: Minimal _Event in JSON .................................................................................................................. 10 

Example 5: Realistic printf-like _Event in JSON ................................................................................................. 10 

Example 6: Hypothetic fully structured _Event in JSON .................................................................................... 11 

Example 7: Simple JSON _Record ...................................................................................................................... 12 

Example 8: Simple JSON _Sequence .................................................................................................................. 12 

Example 9: _Sequence of _Sequences of equal _Data encoded in JSON Physical model................................. 13 

Example 10: Meaningful _Record _Names ....................................................................................................... 14 

Example 11: _Types as _Record _Names .......................................................................................................... 15 

Example 12: Simple JSON _Trace ...................................................................................................................... 16 

Example 13: Simple TSV+JSON _Trace with hidden "\n" and "\t" between rows and cells ............................. 18 

Example 14: Simple XML _Trace ........................................................................................................................ 20 

Example 15: Simple CBOR diagnostic notation _Trace ..................................................................................... 22 

Example 16: Simple CBOR hex binary _Trace .................................................................................................... 23 

 



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 4 / 25 

1. Goals 
Our goal is to define a generic data model for execution traces that can: 

1. exploit existing tracepoints to the best;  

2. facilitate human exploration;  

3. allow automatic analysis by various tools; and  

4. allow simple and efficient trace provider implementations.  

 

To illustrate these goals, let us look at an example of trace that satisfies them using the TSV+JSON physical 

data model and the modmedLog C++ trace library: 

- All the structure of this trace comes from usual printf-like and stream-like C++ tracepoints 

- Human exploration is facilitated by emphasizing changes in metadata, providing a constant _format for 

all events issued by the same tracepoint  

- A lot of trace analysis can be done without parsing using common worksheet data processing 

 
Example 1: TSV+JSON _Trace with data highlighted in a worksheet processing software 

The specification section (page 6) contains the minimum requirements deemed necessary to allow powerful 

automatic analysis (goal #3) while keeping simple implementations possible (goal #4). In particular, it leaves 

a lot of freedom to trace providers (goal #1). However, contrary to simpler specifications like JSON, it also 

contains many recommendations to facilitate human exploration (goal #2) or guide implementers.  

https://forge.imag.fr/scm/browser.php?group_id=982


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 5 / 25 

Tracing libraries that put restrictions on tracepoints and the types of associated arguments to reach the 

maximum level of performance (such as LTTng or WPP) provide traces that can usually be translated to one 

of the defined physical formats to pursue goals #2 and #3.  

In order to allow many different implementations (such as XML, or Concise Binary Object Representation) 

targeting various needs and tradeoffs between trace performance and completeness, this specification uses 

the classical Conceptual, Logical, and Physical layers of data to separately model various aspects of traces as 

depicted below: 

 

Defining traces data using these 3 layers enables interoperability between trace producers and consumers 

(monitors, analyzers but also stores, transmission channels, etc.). For instance, transmission channels and 

stores may only need to know about the Physical model, while filtering tools may ignore the Conceptual 

model. On the other hand, trace providers and analyzers can use the Logical model to remain independent 

from the Physical model (such as a wire or file format) and know the minimum about the Conceptual model 

required for the task at hand. 

Separating the Conceptual and Logical models also allows to delay or limit the arduous classification and 

standardization work to the data one wants to use in a particular application. Indeed, this specification just 

defines what are a generic _Trace and _Event. Further conceptual definitions such as additional data and 

_Event _Types are left to trace providers.

Conceptual 
(Semantic)

•Basic _Trace and _Event

•User-defined _Event _Types with semantics

•_Data _Types with semantic

•Standards

•SI Units

•SNOMED Clinical Terms

•...

Logical
(Structure)

•_Record with named items (for Entities)

•_Sequence (for Relationships between Entities)

•_Null (for empty 0-1 Relationships)

•_Text and other simple data (for Entity Attributes)

Physical
(Syntax/Encoding)

•XML, JSON, CBOR data (files)

•Relational Databases

•Windows Event Log, systemd/journal, LTTng traces

•...



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 6 / 25 

2. Specification 
This section of the document is normative. The keywords "must", "must not", "required", "shall", "shall not", 1 

"should", "should not", "recommended", "may", and "optional" in this section are to be interpreted as 2 

described in RFC 2119. 3 

All  definitions using this typography  use the Extended Backus-Naur Form (EBNF) formalism with 4 

the extension that uppercase and lowercase characters in literals are considered equals and will not be 5 

explicitly mentioned. 6 

Summary of EBNF notations used: 

= start of definition "…" string literal (case insensitive) 
* repetition (zero or more) (…) group 
, concatenation (*…*) comment 
| alternative ; end of definition 

Where convenient, definitions may restrict the EBNF with case-insensitive POSIX Extended Regular 7 

Expressions (ERE) specified in EBNF comments like: (* matching ... *).  8 

As usual in EBNF the order of items in concatenation and repetition is meaningful and must be preserved 9 

during transfer and processing. This is obviously the case for the order of _Events in a _Trace. The only 10 

exception is the order of a _Record’s items which is NOT meaningful and may be altered during transfer or 11 

processing. 12 

NB: UML class diagrams are not normative but facilitate understanding definitions.  

a) Preliminary definitions 13 

TRACEPOINT 14 

A location in executable code that is tracing event occurrences by adding _Events to a _Trace. A single 15 

location in template source code may result in several TRACEPOINTs in executable code. 16 

EVENTDATA 17 

Any _Data part within an _Event, including its _args. 18 

It should be reachable either by name or position or any sequence thereof. For instance, in JavaScript: 19 

".identifier", "[‘identifier’]" to access _Record items ; "[0]" to access _Sequence items. 20 

b) Conceptual model 21 

Let us start with the root of the Conceptual model of trace data: 22 

_Trace = _Sequence (* of _Event *) ; 23 

It must be a flat, ordered sequence of non-overlapping _Events. In particular, groups of related _Events must 24 

be flattened using, for instance, dedicated "start" and "stop" _Events.  25 

Particular analyses may have to restore the grouping in nested _Event trees which are outside the scope of 26 

this specification. 27 

_Events order in a _Trace may only be partial. For instance: 28 

● _Events issued by different processes may only be ordered up to their timestamp resolution. 29 

● _Events issued by different threads may only be ordered up to thread interleaving after _Event’s 30 

occurrence and before actual insertion into the _Trace. 31 

A _Trace may be the union of several _Traces provided a (partial) ordering procedure is given. 32 

https://tools.ietf.org/html/rfc2119
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 7 / 25 

NB: In case of a crash, the most recent (and important) _Events may be absent from the _Trace. Requiring 

that all _Events be flushed immediately would prevent many performance optimizations such as buffering 

and queuing. As a result, memory dumps are necessary to diagnose those problems. Some implementations 

may give access to unflushed _Events from memory dumps. 

 
UML class diagram 1: Conceptual _Trace data model 

Examples 
[] 
Example 2: Empty JSON _Trace 

[{"_elapsed_s": 0.01458 ,"_timestamp":"2013-11-12T00:12:56+00:00" 

 ,"_format"   :"1st empty event" 

 ,"_args"     :[]} 

,{"_elapsed_s": 0.0152 

 ,"_format"   :"2nd empty event" 

 ,"_args"     :[]} 

] 
Example 3: Simplistic JSON _Trace 

_Event = _Record (* satisfying the requirements below *) ; 33 

It must represent a single occurrence of a TRACEPOINT. 34 

The 1st _Event in a _Trace must contain the following required ( _Name , _Data ) item: 35 

( "_timestamp" , _Timestamp ) 36 

Its value must unambiguously represent the point in Coordinated Universal Time (UTC) at which the 37 

_Event occurred. For consistency, _timestamp value of the 1st _Event in a _Trace must be measured 38 

less than 0,1 second before its _elapsed_s value below. 39 

The 1st _Event may be delayed until both measures can be taken within this range. Subsequent 40 

_Events _timestamp may be dismissed. 41 

All _Events must contain at least the 3 following required ( _Name , _Data ) items: 42 

( "_elapsed_s" , _Decimal ) 43 

Its value must be a monotonically increasing _Decimal representing elapsed seconds between a 44 

single point in time and the current _Event. Its precision must be greater than or equal to the 45 

precision of _timestamp. 46 

https://en.wikipedia.org/wiki/Coordinated_Universal_Time


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 8 / 25 

The value of the 1st _Event in a _Trace should be in the [0-1[ range to facilitate human exploration. It 47 

may not be exactly 0.0 for implementation reasons (see for instance Example 1). 48 

NB: These requirements provide a simple common time scale for all _Events in a _Trace to facilitate 

human exploration and tools analysis without having to deal with the complexity of _Timestamp 

values (parsing, UTC offset, etc.). 

( "_format" , _Text ) 49 

It must be identical for all occurrences of a particular TRACEPOINT. Different TRACEPOINTs may have 50 

identical _format though, in which case it will be necessary to use other EVENTDATA to select 51 

_Events issued by the desired TRACEPOINT. 52 

It should informally give meaning to the _Event. Moreover, trace providers should put as much 53 

constant information as possible from TRACEPOINTs into _format, to satisfy goal #1 while allowing 54 

gradual TRACEPOINT improvements. 55 

For instance, TRACEPOINTs may follow encoding rules for _format value such as the C++ printf 56 

function to give formal meaning to _args below. They may additionally use _Tags to give well-57 

defined meaning to _Events. 58 

( "_args" , _Sequence ) 59 

It must contain the values of TRACEPOINT arguments. When _format gives formal meaning to _args, 60 

the _Sequence values must appear in the same order as in _format. 61 

Decoders may provide direct access to _args items by position, though they should not count as 62 

_Event items, so, one may write code like: 63 

var event = {_args:['a',1]}; 64 

for (var i=0; i<event._args.length; i++) writeln(event[i]); 65 

The following optional _Names have reserved meaning: 66 

( "_arg_names" , _Sequence (* of _Name | _Null *) ) 67 

It must have the same items count and ordering as _args and must only contain _Names of 68 

TRACEPOINT arguments, or _Null for _args with no known name. 69 

Decoders may provide direct access to _args items by _arg_names, though they should not count as 70 

_Event items, so, one may write code like: 71 

var event = {_args:['a',1],_arg_names:['first','last']}; 72 

for (var i=0; i<event._arg_names.length; i++) writeln(event[event._arg_names[i]]); 73 

writeln(event.first); 74 

writeln(event['last']); 75 

If, and only if, _arg_names contains duplicate _Names, decoders should concatenate values in a 76 

_Sequence since _Names denote a relationship between the value and its enclosing _args. 77 

( "_arg_types" , _Sequence (* of _Type | _Null *) ) 78 

It must have the same items count and ordering as _args and must only contain _Types of 79 

TRACEPOINT arguments, or _Null for _args with unknown type. 80 

NB: When user-defined _Types in a _Trace are unknown, it is still possible to analyze the _Trace 

based on its logical structure and _Base_Types. 

http://fr.cppreference.com/w/cpp/io/c/fprintf
http://fr.cppreference.com/w/cpp/io/c/fprintf


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 9 / 25 

( "_message" , _Text ) 81 

It must contain _Text formatted according to _format with corresponding _args. 82 

It must not replace _format and _args since it may be impossible for _Trace users to understand its 83 

structure. 84 

( "_severity" , _Integer ) 85 

The meaning of values must correspond to RFC5424 (Syslog) "PRI" severities where 0 is the most 86 

severe and 7 is the least one. 87 

Values 0-1 should not be used by libraries since these libraries may be used by unimportant 88 

applications. 89 

_Trace providers may define other notions of "priority" associated to their own _Name. 90 

( "_severity_id" , _Name ) 91 

It must be the RFC5424 (Syslog) "PRI" name corresponding to _severity value: 0="EMERGENCY" ; 92 

1="ALERT" ; 2="CRITICAL" ; 3="ERROR" ; 4="WARNING" ; 5="NOTICE" ; 6="INFORMATIONAL" ; 93 

7="DEBUG" 94 

( "_category" , _Text ) 95 

It must be identical for related TRACEPOINTs. 96 

All TRACEPOINTs written by a development individual or team or corporation should contain a 97 

common part. TRACEPOINTs of library code should set a non-empty value. 98 

Application-level TRACEPOINTs may not set a value. 99 

( "_function" , _Text ) 100 

It must be identical for TRACEPOINTs belonging to the same "function" of the source code language 101 

when such notion exists. 102 

The function name may be simplified to remove information redundant with other items such as 103 

_category (for instance, if C++ namespace is used as category and duplicated in _function). 104 

( "_path" , _Text ) 105 

It must be a path to the source code file that generated the TRACEPOINT. 106 

( "_line" , _Integer ) 107 

It must be the line in _path that generated the TRACEPOINT. 108 

( "_id" , _Text ) 109 

It must be identical for all _Events issued by the same TRACEPOINT, although _Trace providers must 110 

not be obliged to manually assign _ids. 111 

It should be as stable as possible to facilitate analysis of multiple _Traces, though automatic and 112 

stable _ids usually do not exist (executable code addresses are relocatable at run-time, static data 113 

addresses are relocatable at compile-time, etc.). It should also be different for different kind of 114 

_Event. 115 

Beware though that, in practice, different _Events from different sources may use the same _id.  116 

Non-empty values may be used to check the homogeneity of filtered _Event _Sequences. 117 

( "_count" , _Integer ) 118 

It must be the number of times a TRACEPOINT was hit before it issued the current _Event during an 119 

execution (this is zero-based as most programming languages indices). 120 

One may use this to detect _Event occurrences missing from a _Trace. 121 

https://tools.ietf.org/html/rfc5424#page-11
https://tools.ietf.org/html/rfc5424#page-11


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 10 / 25 

( "_computer_id" , _Text ) 122 

It must be identical for all _Events issued by the same computer. 123 

The representation should be one used by the Operating System. 124 

( "_process_id" , _Text ) 125 

It must be identical for all _Events issued by the same Operating System process. 126 

The representation should be one used by the Operating System. 127 

( "_thread_id" , _Text ) 128 

It must be identical for all _Events issued by the same Operating System thread. 129 

The representation should be one used by the Operating System. 130 

( "_user_id" , _Text ) 131 

It must be identical for all _Events issued by the same Operating System user. 132 

The representation should be one used by the Operating System. 133 

( "_group_id" , _Text ) 134 

It must be identical for all _Events issued by the same Operating System user group. 135 

The representation should be one used by the Operating System. 136 

( "_object_id" , _Text ) 137 

It must be identical for all _Events issued by the same source code language object. 138 

The representation should be one used by the source code language. 139 

Examples 
{"_elapsed_s": 0.0152 

,"_format"   :"" 

,"_args"     :[]} 

Example 4: Minimal _Event in JSON 

{"_elapsed_s": 0.0152 

,"_severity" : 7 

,"_function" :"int main(int,char*[])" 

,"_path"     :"test.c" 

,"_line"     : 57 

,"_format"   :"C-style logging is %s and %s" 

,"_args"     :["not type-safe (may crash!)","not extensible to user types"] 

,"_message"   :"C-style logging is not type-safe (may crash!) and not extensible to user 

types"} 

Example 5: Realistic printf-like _Event in JSON 

{"_elapsed_s": 1.01458 

,"_timestamp":"2017-10-19T18:37:26+02:00" 

,"_severity" : 4 

,"_category" :"acme" 

,"_function" :"Service::~Service(void)" 

,"_path"     :"test.c" 

,"_line"     : 57 

,"_thread_id":"1664" 

,"_id"       :"Q" 

,"_count"    : 0 

,"_format"   :"#Trace #Requirement #Failure m_submitted == m_processed + m_rejected" 

,"_args"     :[ 0           , 1          , 7           ] 

,"_arg_names":["m_processed","m_rejected","m_submitted"] 

https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record
https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record
https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record
https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record
https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record
https://minmaxmedical.sharepoint.com/sites/InCAS/Documents%20partages/17-14%20Tracing%20on%20LinuxRT/Generic%20Execution%20Traces%20Specification%20v1.1a.docx#__Event_=__Record


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 11 / 25 

,"_arg_types":["_Integer"   ,"_Integer"  ,"_Integer"   ]} 

Example 6: Hypothetic fully structured _Event in JSON 

c) Logical model 140 

This model relates the Conceptual and Physical Models using as few as required data structures and base 141 

types to support a broad range of Conceptual and Physical Models. 142 

It also aims to be: 143 

1. Open to a wide range of platforms, languages and formats 144 

2. Usable without external data schemas such as event catalogs or hard-coded Run-Time Type Information 145 

3. Translatable to a text format readable by non-programmers 146 

4. Amenable to time- and space- efficient implementations 147 

This model is not expected to be able to encode complex object graphs automatically (it will neither prevent 148 

loops in a graph, nor automatically assign references to avoid duplication). We encourage users to use 149 

existing file formats like STL, OBJ to encode large or complex data sets like meshes, and standard ways to 150 

point to these data from the trace data such as URIs (including relative file paths). 151 

_Data = _Record | _Sequence | _Null | _Text ; 152 

Physical models must provide some way to distinguish between the 4 alternatives. They can use any internal 153 

representation suitable for their purpose such as text, binary, contiguous memory, trees, etc.  154 

Moreover, all _Data that is not represented as a _Record or _Sequence or _Null must have a well-defined 155 

_Text representation. Physical models can use specialized binary representations of, say, numerical data, 156 

provided they also support a translation to a well-defined _Text representation. 157 

 

UML class diagram 2: Minimal Logical model (required) 

User-defined data models should follow the following guidelines to favor interoperability with tools: 158 

• ER Entities should be defined as a _Record except for the simplest ones (see below). 159 

• Simple ER entities like, for instance, a "KeyValue" entity with "key" and "value" items should also be 160 

defined as a _Record with explicit _Names rather than as a fixed-size _Sequence or _Text with 161 

implicit semantic. 162 

• ER attribute values and entities so simple that decomposition in separately identified items seems 163 

useless should be represented as _Text. 164 

• 0-n and 1-n ER relationships should be defined as a _Sequence 165 

• 0-1 ER relationships between entities should directly use the related entity or the special _Text value 166 

_Null to denote empty relationships. 167 

https://tools.ietf.org/html/rfc3986
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 12 / 25 

• n-n ER relationships may be expressed by _Sequences storing foreign keys of related _Records. 168 

_Record = ( _Name , _Data )* (* ordering MAY NOT be preserved *) ; 169 

Decoders must provide some way to iterate through _Record items that relates the corresponding _Name  170 

and _Data. When iterating items with duplicate _Name, the respective order of these items must be 171 

preserved (in case it is meaningful). They can use any internal representation suitable for their purpose such 172 

as list of (_Name,_Data) pairs, including non-order-preserving hash maps, etc. An empty _Record which can 173 

correspond to an existing, empty entity must not be interpreted as _Null. 174 

Decoders may provide direct access to _Record items by _Name. If, and only if, _Record contains duplicate 175 

_Names, decoders should concatenate values in a _Sequence since _Names denote a relationship between 176 

the value and its enclosing _Record. 177 

Examples 
{ "name":"John", "children" : []} 

Example 7: Simple JSON _Record 

_Sequence = _Data * ; 178 

Physical models must provide some way to access each _Data item in the order it was defined. They can use 179 

any internal representation suitable for their purpose such as lists, vectors, etc. An empty _Sequence which 180 

can correspond to an existing, empty relationship must not be interpreted as _Null. 181 

Examples 
[ null,"foo" , {}] 

Example 8: Simple JSON _Sequence 

_Null = (* absence of information *) ; 182 

It must be interpreted as absence of information. In particular, a _Record with a _Name associated with 183 

_Null must be considered equal to the same _Record without the _Name. On the contrary, a _Sequence with 184 

a _Null item must not be considered equal to the same _Sequence with no item. 185 

NB: An empty _Record or _Sequence or _Text must not be interpreted as _Null. 

_Text = _Character * ; 186 

An empty _Text which can correspond to blanked out information must not be interpreted as _Null. 187 

Unless otherwise specified by the Conceptual or Physical models used, _Text values matching one of the 188 

_Base_Types below should be interpreted as a value of the corresponding _Base_Type. This implies that 189 

different _Text representations of the same _Type value (say, 1.2 and 1.20) should be considered equal. On 190 

the contrary, _Text values matching some Physical textual model like "null" _Text matching a JSON null 191 

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 13 / 25 

value representation should not be automatically interpreted as such. It should always be possible for trace 192 

users to reinterpret some _Type value as _Text if necessary to, say, sort values alphabetically. 193 

 

UML class diagram 3: Specified _Text representations (optional) 

Decoders with specialized _Type representations may be able to distinguish between values like the 194 

_Boolean value true and the _Text value "true" based on physical representation or context. 195 

Examples 
[[{"foo":null},{}] 

,[true,"tRue","TRUE"] 

,[false,"falSE","FALSE"] 

,[123,123.0000,"123."] 

,["2013-11-12T03:12:56+00:00","2013-11-11T21:12:56-06:00"]] 

Example 9: _Sequence of _Sequences of equal _Data encoded in JSON Physical model 

User-defined data 196 

_Text representations of user-defined data should follow these guidelines to favor interoperability with 197 

tools: 198 

• They should start with a sequence different from representations defined in this specification. 199 

• They should use well-established standards like iso8601 for date and time values, even if it is not 200 

explicit in the representation. 201 

With knowledge of such user-defined _Types, _Text values may be further decomposed or interpreted. For 202 

instance, given the definition:  Point2D="(",_Decimal,"_",_Decimal,")";  the _Text "(1.2_0.4)" may be 203 

interpreted as a point in a 2D coordinate system. 204 

_Boolean = "TRUE" | "FALSE" ; 205 

It should be interpreted as the corresponding truth value. 206 

Physical models may use canonical representations. 207 

_Integer = _Text (* matching [+-]?[0-9]+ *) ; 208 

It should be interpreted as the corresponding integer in decimal notation. 209 

Physical models may limit the range of integer numbers. 210 



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 14 / 25 

_Decimal = "NaN" | (""|"+"|"-") , "INFINITY"  211 

         | _Text (* matching [+-]?[0-9]*(.[0-9]*)?([eE][+-]?[0-9]+)? *) ; 212 

Unless otherwise specified by a Physical or Conceptual model, a _Decimal without a decimal or fractional 213 

part should be processed as an _Integer. Otherwise, it should be interpreted as the corresponding number in 214 

decimal exponent notation as specified for XSD precisionDecimal (with "INF" being replaced with the more 215 

explicit "INFINITY"). 216 

Physical models may limit the range or precision of decimal numbers and may use canonical representations. 217 

_Timestamp = _Text (* matching ISO8601 format YYYY-MM-DDThh:mm:ss±hh:mm *) ; 218 

It should be interpreted as the corresponding ISO8601 point in time as specified for XSD dateTimeStamp. 219 

Physical models may use canonical representations for UTC offset. 220 

_Bytes = "0x" , _Text (* matching ([0-9a-f][0-9a-f])+ *) ; 221 

It should be interpreted as the corresponding hex encoding of the sequence of bytes in network order. 222 

Binary data requires Conceptual knowledge of its internal structure to be used, so, in general, its 223 

representation should be defined for each user data type using other constructions of the Logical model. 224 

When it is necessary to store binary data for better time or space performance, Physical models handling 225 

binary data should be used. The convention above may only be used as a last resort. 226 

_Tag = "#" , _Name ; 227 

This should be used to emphasize user-defined terms in _format. 228 

_Name = _Text (* matching [_A-Za-z][_A-Za-z0-9]* *) ; 229 

Identifiers are the principal way for a Conceptual model to convey meaning. As such, they should be carefully 230 

chosen and must respect the following rules: 231 

● A "_" at the beginning is not prohibited but reserved for future standardization (as is the case in 232 

many languages) 233 

● Although upper case may be used for readability, case may be altered depending on source language 234 

and operating systems and must not be considered significant for comparisons. "_" should be used 235 

to separate words in a complex _Name. 236 

● They should be unique in a _Record or in _arg_names because the handling of duplicate _Names is 237 

undefined (for the same reason as explained in JSON RFC7159 section 4). 238 

● They should convey the Conceptual data type of its value representation using appropriate 239 

standards and taxonomies including: 240 

o SI units or derived units: s, kg, mm, min, N_m, … 241 

("per_" may be used for negative exponent quantities like: per_s, kg_per_m3) 242 

o RFC terms: ip_v4 … 243 

o SNOMED terms: varus, distal … 244 

o Pharmacological IU (International Unit) 245 

o User-defined taxonomies 246 

● They should convey the role of its value in relation with an enclosing _Record: 247 

{ "persons": [ {"first_name":"John", "last_name":"Doe", "birth_date":"08/05/1945"} ] } 248 

Example 10: Meaningful _Record _Names 249 

● They should not convey implementation details such as: 250 

o C++ object member beginning with "m_": m_birth_date 251 

o C++ pointer to implementation: m_impl 252 

https://www.w3.org/TR/xsd-precisionDecimal/
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#dateTimeStamp
_format#_(_
http://tools.ietf.org/html/rfc7159#section-4
http://www.bipm.org/en/publications/si-brochure/
http://www.snomed.org/
https://en.wikipedia.org/wiki/International_unit


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 15 / 25 

● They may be equal to a _Type when there is no additional useful meaning: 253 

{ "novels": [ {"author_name":"John", "_text":"Once upon a time …"} ] } 254 

Example 11: _Types as _Record _Names 255 

_Base_Type = "_Trace" | "_Event" | "_Record" | "_Sequence" | "_Null" | "_Text"  256 

           | "_Boolean" | "_Integer" | "_Decimal" | "_Timestamp" | "_Bytes" 257 

           | "_Tag" | "_Name" | "_Base_Type" | "_Type" | "_Character" ; 258 

 259 

_Type = _Base_Type | _Name (* for user-defined subset of _Text with defined semantic *) ; 260 

Every _Type _Name must define a _Text representation and semantic for all its values. Equal _Text 261 

representations must always denote equal values. 262 

Different _Text may represent equal values, though (for instance: "123" and "123.0"). 263 

New _Type _Names may define operations on values for further analysis. 264 

_Character = (* a single Unicode character *) ; 265 

Encoding is left to Physical Models. 266 

d) Physical models 267 

This specification defines JSON, TSV+JSON, XML and CBOR physical models of the same conceptual _Trace. 268 

JSON is arguably the most universal and readable physical model and probably the first one to read to make 269 

sense of the specification. It is very close to Common Event Expression JSON encoding but with more explicit 270 

and fewer standard _Names to leave more space to domain-specific _Names and an open set of user _Data 271 

values. 272 

Choosing another physical model may better suit particular needs: 273 

• One advantage of TSV+JSON is readability 274 

• One advantage of XML is its toolset 275 

• One advantage of CBOR is performance (less encoding, more memory copies)  276 

http://www.unicode.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.w3.org/XML/
http://cbor.io/
https://cee.mitre.org/language/1.0-beta1/cls.html#json-encoding


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 16 / 25 

JSON 277 

As stated at http://json.org/ : 

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and 

write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript Programming 

Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely language 

independent but uses conventions that are familiar to programmers of the C-family of languages, including C, C++, 

C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-interchange 

language. JSON is built on two structures: 

• A collection of name/value pairs: a JSON object begins with { and ends with }. 

• An ordered list of values: a JSON array begins with [ and ends with ]. 

Example 
[{"_elapsed_s": 0.01458 

 ,"_timestamp":"2013-11-12T00:12:56+00:00" 

 ,"_severity" : 7 

 ,"_format"   :"#Trace QString(argv[0]) %s" 

 ,"_args"     :[""              ] 

 ,"_arg_names":["QString_argv_0"] 

 ,"_arg_types":["_Text"         ] 

 } 

,{"_elapsed_s": 0.0152 

 ,"_timestamp":"2013-11-12T00:12:56+00:00" 

 ,"_severity" : 7 

 ,"_format"   :"C-style logging is %s and %s" 

 ,"_args"     :["not type-safe (may crash!)","not extensible to user types"] 

 } 

] 
Example 12: Simple JSON _Trace  

http://json.org/


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 17 / 25 

_Trace 278 

When a JSON _Trace is contained in a JSON object, it should have a "_events" field containing the _Sequence  279 

of _Events. 280 

The JSON object may be used to convey other metadata such as a reference to a specific Conceptual model 281 

to use to understand the _Trace. 282 

The Logical model is encoded as follows: 283 

_Record 284 

It must be a JSON object. 285 

_Sequence 286 

It must be a JSON array. 287 

_Null 288 

It must be a JSON null. 289 

_Text 290 

It must be a JSON string unless the provider knows for sure it is one of the values below. 291 

_Boolean 292 

It should be a JSON true or false. 293 

It may be a JSON string though for interoperability reasons. 294 

_Integer 295 

It should be a JSON number.  296 

It may be a JSON string though for interoperability reasons. 297 

_Decimal 298 

It should be a JSON number when possible, or a JSON string (for "NaN" and "Infinity" values).  299 

It may be a JSON string though for interoperability reasons. 300 

TSV+JSON 301 

This physical model uses the aforementioned JSON encoding of the logical model inside a TSV format. It aims 

to facilitate human exploration without sacrificing tools analysis. It places metadata common to all _Events 

in columns that can be used for filtering or simply eliminated when irrelevant to the task at end. It 

emphasizes changes in the _Trace by eliminating redundant values between 2 subsequent _Events. 

NB: This format can be read following W3C best practices for parsing tabular data with the following non-

default parameters: comment prefix: "#" ; delimiter: "\t" ; escape character "\", although eliminated 

redundancy between subsequent _Events must be restored specifically. 

https://www.iana.org/assignments/media-types/text/tab-separated-values
https://www.w3.org/TR/tabular-data-model/#parsing


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 18 / 25 

Example 
_elapsed_s _timestamp _severity _format _other_data _args 
0.00864119 2017-10-19 

T18:37:26 
+02:00 

7 #Trace QString(argv[0]) %s {"_path": 
"main.cpp"} 

my.exe 

0.00879013 
  

C-style logging is %s and %s {} not  
type-safe 

not 
extensible 

0.00898055 
 

6 started demonstration to users  
0.0100073 

 
2 failure affecting the user: %s  null 

0.0100504 
 

7 #Trace md::Hex(&sfile) %s {"_path": 
"main.cpp"} 

0x79f7d0 

0.0101914 
  

#Trace toPrint %s  10 
0.0103344 

  
#Trace toPrint %s  plop 

0.0106528 
  

#Trace toPrint %s  blip 
0.0107753 

  
#Trace toPrint %s  42 

0.0110503 
  

#Trace debugEnabled %s  TRUE 
0.0111072 

  
#Trace current %s previous %s  1 1 

0.0111459 
  

#Trace current %s previous %s  2 1 

Example 13: Simple TSV+JSON _Trace with hidden "\n" and "\t" between rows and cells 

_Trace 302 

The _Trace is split in lines that must end with "\n" (LF, U+000A) and/or "\r" (CR, U+000D) characters (as 303 

specified by the platform). 304 

Lines starting with "#" are comment lines with unspecified meaning that may be used to convey _Trace 305 

metadata (such as a reference to a specific Conceptual model to use to understand the _Trace) or filter out 306 

_Event lines (as defined below). 307 

The 1st non-comment line is a TSV nameline that must contain a sequence of _Names separated by "\t" (HT, 308 

U+0009) characters. This sequence: 309 

• must include: "_elapsed_s", "_timestamp", "_format" 310 

• must end with a required "_args" (further columns are implicitly interpreted as corresponding to the 311 

remaining _args items) 312 

• should include: "_severity", "_category", "_function", and, when available: "_id", "_count", 313 

"_arg_names", "_ arg_types", "_other_data" 314 

The subsequent non-comment TSV lines must represent the _Sequence of _Events from the _Trace in the 315 

same order. 316 

_Event 317 

The _Event items' values must be written into TSV fields separated by "\t" characters as follows: 318 

• Each TSV field must contain the _Event item's value corresponding to the 1st line _Name, except _args 319 

• When present, the TSV field corresponding to "_other_data" in the 1st line must contain a JSON _Record 320 

of all remaining _Event items 321 

• Each _args items must be added as separate TSV fields in the same order 322 

All values must be represented in JSON and all "\t", "\n", "\r" characters in JSON whitespace must be 323 

removed (JSON encodes them everywhere else). 324 

Redundancy elimination 325 

In each TSV column, an empty TSV field ("\t\t" without any character in between) denotes a value equal to 326 

the one in the previous TSV line (equality may be up to some arbitrary precision). This is the only use of 327 

"\t\t" (empty JSON string is: "\t""\t" and JSON null is "\tnull\t"). Encoders should use this value to eliminate 328 

redundancy as follows: 329 

http://www.unicode.org/charts/PDF/U0000.pdf
http://www.unicode.org/charts/PDF/U0000.pdf
http://www.unicode.org/charts/PDF/U0000.pdf


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 19 / 25 

● _elapsed_s, _format, _id values should not be eliminated to facilitate human exploration 330 

(_format and _id give meaning to the _Event) 331 

● _severity values different from 7 should not be eliminated to lower the risk of ignoring non-debug 332 

_Events during human exploration (space savings are not interesting anyway) 333 

● By default, values in the following TSV columns equal to the one in the previous TSV line should be 334 

eliminated: _timestamp, _severity, _function, _path, _line, _count, _computer_id, _process_id, 335 

_thread_id, _user_id, _group_id, _object_id 336 

● _timestamp values in the following range should not be eliminated to facilitate human exploration 337 

(previous._timestamp) +/- 1min 338 

(it allows synchronizing _Event with anything happening in the environment) 339 

● _timestamp values in the following range may be eliminated: 340 

(previous._timestamp - previous._elapsed_s + _elapsed_s) +/- 0,1s 341 

 342 

Decoders must replace empty TSV fields with the previous _Event's value.  343 



MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 20 / 25 

XML 344 

As stated at https://www.w3.org/XML/ : 

Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML [on which HTML is 

defined. It is] playing an increasingly important role in the exchange of a wide variety of data on the Web and 

elsewhere. 

It features an impressive amount of associated technologies that help validate, transform and process XML. 

Example 
<?xml version="1.0" encoding="utf-8" ?> 

<trace> 

<s name="_events"> 

   <r><t name="_elapsed_s" type="precisionDecimal">0.01458</t> 

      <t name="_timestamp" type="dateTimeStamp">2013-11-12T00:12:56+00:00</t> 

      <t name="_severity"  type="integer">7</t> 

      <t name="_format">#Trace QString(argv[0]) %s</t> 

      <s name="_args"> 

      </s> 

   </r> 

   <r><t name="_elapsed_s">0.0152</t> 

      <t name="_timestamp">2013-11-12T00:12:56+00:00</t> 

      <t name="_severity">7</t> 

      <t name="_format">C-style logging is %s and %s</t> 

      <s name="_args"> 

         <t>not type-safe (may crash!)</t> 

         <t>not extensible to user types</t> 

      </s> 

   </r> 

</s> 

</trace> 
Example 14: Simple XML _Trace 

_Trace 345 

An XML _Trace document should have a "trace" root element. Its _Sequence  of _Events "s" element should 346 

have a "_events" name attribute. 347 

The document root may be used to convey user-defined schemas for _Trace requirements and others. 348 

The Logical model is encoded as follows: 349 

_Record 350 

It must be a XML element "r" with XML attribute "name" added to each child element and containing the 351 

corresponding _Identifier. 352 

Although not required by the Logical Model, the order of child elements should be preserved as usual in XML 353 

documents. 354 

_Sequence 355 

It must be a XML element "s". 356 

_Null 357 

It must be a XML empty element "n" (that is to say <n/>, not a "n" element with empty text node <n></n>). 358 

https://www.w3.org/XML/


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 21 / 25 

_Text 359 

It must be a XML element "t". 360 

The tag may contain a "type" attribute with the name of a XSD built-in data type containing the value. 361 

_Boolean 362 

It must be a XML element "t".  363 

It should have type="boolean" attribute and the corresponding lexical representation. 364 

_Integer 365 

It must be a XML element "t".  366 

It should have type="integer" attribute and the corresponding lexical representation. 367 

_Decimal 368 

It must be a XML element "t".  369 

It should have type="precisionDecimal" attribute and the corresponding lexical representation. 370 

_Timestamp 371 

It must be a XML element "t".  372 

It should have type="dateTimeStamp" attribute and the corresponding lexical representation with a 373 

preference for the default _Timestamp format. 374 

_Bytes 375 

It must be a XML element "t".  376 

It should have type="hexBinary" or "base64Binary" attribute and the corresponding lexical representation.  377 

https://www.w3.org/TR/xmlschema-2/#built-in-datatypes


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 22 / 25 

CBOR 378 

As stated at http://cbor.io/ : 

The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of 

extremely small code size, fairly small message size, and extensibility without the need for version negotiation. 

• JSON data model: CBOR is based on the wildly successful JSON data model: numbers, strings, arrays, maps 

(called objects in JSON), and a few values such as false, true, and null. 

• No Schema needed: One of the major practical wins of JSON is that successful data interchange is possible 

without casting a schema in concrete. This works much better in a world where both ends of a communication 

relationship may be evolving at high speed. 

• Embracing binary: Some applications that would like to use JSON need to transport binary data, such as 

encryption keys, graphic data, or sensor values. In JSON, these data need to be encoded (usually in base64 

format), adding complexity and bulk. 

• Concise encoding: Some applications also benefit from CBOR itself being encoded in binary. This saves bulk 

and allows faster processing. One of the major motivators for the development of CBOR was the Internet of 

Things, which will include very simple, inexpensive nodes where this counts. 

• Stable format: CBOR is defined in an Internet Standards Document, RFC 7049. The format has been designed 

to be stable for decades. 

• Extensible: To be able to grow with its applications and to incorporate future developments, a format 

specification needs to be extensible. CBOR defines tags as a mechanism to identify data that warrants 

additional information beyond the basic data model. Both future RFCs and third parties can define tags, so 

innovation is “permissionless” but can still be coordinated. 

This physical model uses CBOR to allow storing and transferring data on constrained memory and processing 

hardware (IoT, embedded). It is not designed for efficient access like SQLite (which uses pages for the 

purpose). 

Example 

In CBOR diagnostic notation (inspired by JSON): 

55799( 

[_{_"_elapsed_s":0.01458_3 

  , "_timestamp":0("2013-11-12T00:12:56+00:00") 

  , "_severity" :7 

  , "_format"   :"#Trace QString(argv[0]) %s" 

  , "_args"     :[_] 

  } 

, {_"_elapsed_s":0.0152_3 

  , "_format"   :"C-style logging is %s and %s" 

  , "_args"     : 

    [_           (_"not type-safe (may crash!)") 

    ,            (_"not extensible to user types") 

    ] 

  } 

]) 

Example 15: Simple CBOR diagnostic notation _Trace 

http://cbor.io/


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 23 / 25 

The corresponding CBOR 251 bytes in hex encoding (as given by http://cbor.me): 

D9 D9F7                                  # tag(55799) 
   9F                                    # array(*) 
      BF                                 # map(*) 
         6A                              # text(10) 
            5F656C61707365645F73         # "_elapsed_s" 
         FB 3F8DDC1E7967CAEA             # primitive(4579558419549637354) 
         6A                              # text(10) 
            5F74696D657374616D70         # "_timestamp" 
         C0                              # tag(0) 
            78 19                        # text(25) 
               323031332D31312D31325430303A31323A35362B30303A3030  # "2013-11-12T00:12:56+00:00" 
         69                              # text(9) 
            5F7365766572697479           # "_severity" 
         07                              # unsigned(7) 
         67                              # text(7) 
            5F666F726D6174               # "_format" 
         78 1A                           # text(26) 
            2354726163652051537472696E6728617267765B305D29202573  # "#Trace QString(argv[0]) %s" 
         65                              # text(5) 
            5F61726773                   # "_args" 
         9F                              # array(*) 
            FF                           # primitive(*) 
         FF                              # primitive(*) 
      BF                                 # map(*) 
         6A                              # text(10) 
            5F656C61707365645F73         # "_elapsed_s" 
         FB 3F8F212D77318FC5             # primitive(4579915825216065477) 
         67                              # text(7) 
            5F666F726D6174               # "_format" 
         78 1C                           # text(28) 
            432D7374796C65206C6F6767696E6720697320257320616E64202573  # "C-style logging is %s and %s" 
         65                              # text(5) 
            5F61726773                   # "_args" 
         9F                              # array(*) 
            7F                           # text(*) 
               78 1A                     # text(26) 
                  6E6F7420747970652D7361666520286D61792063726173682129  # "not type-safe (may crash!)" 
               FF                        # primitive(*) 
            7F                           # text(*) 
               78 1C                     # text(28) 
                  6E6F7420657874656E7369626C6520746F2075736572207479706573  # "not extensible to user types" 
               FF                        # primitive(*) 
            FF                           # primitive(*) 
         FF                              # primitive(*) 
      FF                                 # primitive(*) 
Example 16: Simple CBOR hex binary _Trace 

Legend: Logical structure, Conceptual _Names assigning meaning, Data, Comments 

_Trace 379 

When a CBOR _Trace is contained in a CBOR map, it should have a "_events" field containing the _Sequence  380 

of _Events. 381 

The CBOR map may be used to convey other metadata such as a reference to a specific Conceptual model to 382 

use to understand the _Trace. The CBOR file may start with CBOR tag 55799 to distinguish its content from 383 

frequently used file types and particularly from any Unicode file. 384 

http://cbor.me/


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 24 / 25 

Redundancy elimination 385 

To save space and CPU time, encoders must eliminate redundancy between 2 subsequent _Events of a 386 

_Trace as follows: 387 

• An _Event item present in the previous _Event and missing from the current one must be present with 388 

its _Name and set to _Null (this does not happen for items common to all _Events) 389 

● An _Event item value equal to the previous _Event one should be eliminated along with its _Name 390 

● _timestamp values in the following range may be eliminated: 391 

(previous._timestamp - previous._elapsed_s + _elapsed_s) +/- 0,1s 392 

 393 

Decoders must replace missing items with the previous _Event's ones. 394 

To save even more space, CBOR stringref tags may be used, especially for  _Names and common _Event 395 

items such as _path. 396 

The Logical model is encoded in CBOR as follows: 397 

_Record 398 

It must be a CBOR indefinite-length map (major type 5). 399 

_Sequence 400 

It must be a CBOR indefinite-length array (major type 4). 401 

_Null 402 

It must be the CBOR value 22 (Null) (major type 7). 403 

The CBOR value 23 (Undefined) should be interpreted as _Null too. 404 

_Text 405 

It must be a CBOR text string (major type 3). 406 

It should have a definite-length unless it costs too much performance. 407 

_Boolean 408 

It must be a CBOR value 20 (False) or 21 (True) (major type 7). 409 

_Integer 410 

It must be a CBOR integer (major type 0 or 1 depending on sign with appropriate 5-bit value followed by 411 

appropriate integer type). 412 

_Decimal 413 

It must be a CBOR double precision float (major type 7 with 5-bit value 27 followed by double) 414 

Other CBOR precision types may be used. 415 

_Timestamp 416 

It must be a CBOR tag 0 (major type 6) followed by definite-length text string (major type 3) 417 

NB: Redundancy elimination rules eliminate the need for complex binary encodings capturing time zone 

offsets and increased precision. 

_Bytes 418 

It must be a CBOR byte string (major type 2).  419 

It should have a definite-length unless it costs too much performance. 420 

http://cbor.schmorp.de/stringref


MODMED (ANR-15-CE25-0010)  WP2/D3 

Generic Execution Traces Specification V1.2 Page 25 / 25 

3. Related Work 

eXtensible Event Stream (XES) http://www.xes-standard.org/ 

MXML and XES define standard Trace formats used in Business Process Engineering. XES data structures are 

a mix of map (unique keys) and lists of key-values. We think the addition of simple _Sequences of values are 

required, especially to represent 1-n ER relationships. Moreover, XES mandates typing of all attributes. We 

propose a kind of structural typing, mostly explicit (_Record and _Sequence), partly implicit (if some _Text 

looks like a _Timestamp, we should use it accordingly), which is more convenient for intermediate 

transformations and sufficient for analysis (who needs to know more about event data anyway). All in all, 

XES looks like a big step to climb for developers logging raw text and this specification proposes a smoother 

path to structure logs with existing TRACEPOINTs. 

Common Event Expression (CEE) https://cee.mitre.org/language/1.0-beta1/overview.html 

CEE is a discontinued effort to standardize "network" event streams which is arguably the most advanced 

standardization work on structured logs. CEE Log Syntax describes both a JSON and XML encodings. We 

extend the approach by proposing a generic conceptual and logical trace model that can be implemented by 

many Physical models including binary formats. CEE Taxonomies are a very flexible way to add user-defined 

meaning to events. Since the object, action and status terms can almost never collide, this specification 

proposes to add all of them as _Tags into TRACEPOINT _format as a more informal but even more flexible 

way to classify events. 

Syslog https://tools.ietf.org/html/rfc5424  

We recognize syslog is a de facto standard for traces and use its definition of _severity because of its 

prevalence and operational background. But we argue its encoding of EVENTDATA is too complicated for 

simple analysis tools and propose a more general Logical model with a simple JSON encoding. 

Windows Event Logs 

We argue that the need to identify all events and describe them externally can only be done for the most 

lasting software, i.e. Operating Systems and core services, not for most applications. Thus, we propose to 

use _format along with other EVENTDATA to filter _Events and use their _args. 

http://www.xes-standard.org/
https://cee.mitre.org/language/1.0-beta1/overview.html
https://tools.ietf.org/html/rfc5424

