

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 1 / 7

Trace analysis, a preliminary study

Contributors:

Rogerio Aparecido Da Silva LIG Author

Lydie du Bousquet LIG Author

Roland Groz LIG Reviewer

Tareq Sbai LIG Reviewer

Yves Ledru LIG Reviewer

Yoann Blein LIG Reviewer

Arnaud Clère MinMaxMedical Reviewer

Fabrice Bertrand Blue Ortho Reviewer

Partners:

Partly funded by:

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 2 / 7

Contents

1. Introduction 3

2. Informal presentation of the language 4

3. Exemples 6

4. Syntax 6

5. References 6

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 3 / 7

1. Introduction

WP5 investigates the design of tools that exploit information from a corpus of traces.

When disposing of traces representing several executions, it is possible to analyze them as

a whole set and report about the MCPS usages. This is a complementary approach to

monitoring, where each trace is analyzed separately.

The objective of this work package is to offer several tools to present the different executions

in a easy-to-understand way. We choose to propose a language that allows carrying out

some queries, in order to select a set of traces or some data from a set of traces. This

language is built on top of the DSL defined in WP1.

The contribution is based on similar works in the domain of Complex Event Processing

(CEP). We use the convention of SQL-like languages such as ESQL in BeepBeep 3 [7]

and Cayuga Query Language [4].

The language is based on two main operators. The first one aims at reducing a set of traces

with the idea to keep only those that satisfy a property. Trace files are not modified during

this operation. It is called “filtering” in the following. The second main operator aims at

reducing the set of information inside each trace file. It is called “projection” in the following.

Fig. 1 a global view of the approach

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 4 / 7

2. Informal presentation of the language

2.1 Filtering

The first purpose of WP5 is to offer the possibility to select the traces that satisfy a property
from a “repository”. The general syntax to do that is the following:

FROM <trace_set>

FILTER <Property>

Clause FROM defines from where the traces are taken.

Clause FILTER defines a property that is evaluated in order to decide whether a trace is

selected or not. This property has to be expressed in the Partrap language.

Example 1. Select the traces where the surgeon is Dr. House.

FROM trace_set
FILTER occurrence_of Info i where i.surgeon == ’Dr House’

The process of filtering consists in considering each trace belonging to the trace set defined
in the From clause. By default, all events that are expressed in the Filter condition are
supposed to belong to the trace under consideration.

Example 2. Select the traces where event KneeCenter occurs more than 10 times,

between the first occurrence of the event HipCenter and the last occurrence of the

event KneeCenter:

FROM trace_set

FILTER between HipCenter and Kneecenter, occurrence_of 10

KneeCenter

It is possible to express a property with the DSL, to name it and to use the name in the
“FILTER” clause. It is also possible to name the result, in order to reuse it after.

Example 3. Select the traces where the condition ”Temp tp where v1 of temp >

42.5” occurs more than one hundred times, after the first occurrence of the event Temp.

The names of the set are recorded in a file named select_2.

Property_A = after first Temp,
 occurrence_of 100 Temp tp where tp.v1 > 42.5

select_2 =

 FROM trace_set

 FILTER Property_A

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 5 / 7

2.2 Projection

In the previous examples, the full trace is selected. Let us now introduce a way to select
a part of a trace. This is done thanks to the clause “EXTRACT”. There are two ways of

selecting a part of a trace: defining a portion of the trace to considerer and/or a set of
events to keep.

Let us first introduce the clause “INSCOPE”. It is dedicated to the definition of the

portion of the trace.

Example 4. Select all the events after first KneeCenter, for traces where property B is

true.

Property_B = …

FROM trace_set

FILTER Property_B

EXTRACT *
INSCOPE after first Kneecenter

In clause “EXTRACT”, ‘*’ is used to designate all the events. If a specific (set of)

event(s) has to be chosen, it must to be listed explicitly.

Example 5. Select all the events Temp in each trace where property_B holds.

Property_B = …

FROM trace_set

FILTER Property_B
EXTRACT Temp

It is also possible to select events under conditions.

Example 6. Select all the events Temp that are less or equals to 25 after the beginning

of the surgery (materialized by “start_acquisition” event), in each trace where
property_B holds.

Property_B = …

FROM trace_set

FILTER Property_B
EXTRACT Temp t where t.v1<=25 or t.v2<=25 or t.v3<=25
INSCOPE after first start_acquisition

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 6 / 7

3. Exemples

TraceSet = {T1, T2, T3, T4}

T1: [D A A A B B A C A A A]

T2: [A B C D A B C D A B C]

T3: [A A B B B D D D A A B]

T4: [B A B A B A B A B A]

TS2 = FROM TraceSet FILTER occurrence_of D

TS2 = {T1, T2, T3}

TS3 = FROM TS2 EXTRACT C

TS2 = {[C], [C C C], []}

4. Syntax

Defined in the DSL
<scope> ::= [‘within’ <duration>] (‘after’ | ‘before’) (‘each’ | ‘first’ | ‘last’) <event>

| ‘between’ <event> ‘and’ <event>
| ‘since’ <event> ‘until’ <event>

<event> ::= …

E::= FROM (PATH | Nested_From)

 [FILTER <Prop>]
[EXTRACT <event_list_cond> | ‘*’

[INSCOPE <scope>]
]

| <ident>
| Let <ident> = <E> In < E >

Nested_From::=

‘(‘ FROM <E>
[FILTER <Prop>]

[EXTRACT <event_list_cond> | ‘*’
[INSCOPE <scope>]

] ‘)’
| ‘(‘ Let <ident> = <E> In < E > ‘)’

• PATH is new keyword that indicate to the path of trace(s), it will get its value when
the user chooses the folder of trace(s) in the beginning of running the program.

• ‘(‘ ‘)’ is used in Nested_From rule to avoid conflict between outer and inner ‘FROM’,
we got this notation from the convention of SQL.

MODMED (ANR-15-CE25-0010) 2015-2018

WP5/D1 27/04/2018 version 0.2 7 / 7

5. References

[1] Blein, Yoann. WP1/ D1: Preliminary Definition of a Domain Specific Language. Version
0.10, 2016.

[2] Hallé, Sylvain. "From Complex Event Processing to Simple Event Processing." arXiv
preprint arXiv:1702.08051 (2017).

[3] Hallé, Sylvain. "When RV Meets CEP." International Conference on Runtime Verification.
Springer International Publishing, 2016.

[4] Demers, Alan J., et al. "Cayuga: A General Purpose Event Monitoring System." CIDR.
Vol. 7. 2007.

[5] Shafranovich, Yakov. "Common format and MIME type for comma-separated values
(CSV) files." (2005).

[6] Bray, Tim. "The javascript object notation (json) data interchange format." (2014).

[7] Sylvain Hallé, Raphaël Khoury “Event Stream Processing with BeepBeep 3.” RV-CuBES

2017: 81-88

https://dblp.uni-trier.de/pers/hd/k/Khoury:Rapha=euml=l
https://dblp.uni-trier.de/db/conf/rv/cubes2017.html#HalleK17
https://dblp.uni-trier.de/db/conf/rv/cubes2017.html#HalleK17

