
Log Analysis Tools
http://MODMED.minmaxmedical.com

(ANR-15-CE25-0010)

http://modmed.minmaxmedical.com
http://modmed.minmaxmedical.com

Agenda
Log analysis goals (5’) Fabrice Bertrand, Blue Ortho

Verifying complex properties (20’) Yoann Blein, L.I.G.

Merging, classifying, relating events (10’) Manon Linder, MinMaxMedical

Improving trace points (10’) Vivien Delmon, MinMaxMedical

Exploring large logs interactively (5’) Arnaud Clère, MinMaxMedical

Developers survey

Log analysis goals

See
bertrand_Log_Analysis_Goals_(fr).pdf

Verifying complex properties

See
blein_An_Overview_of_the_Monitoring_Engine.pdf

Merging, Classifying, Relating Events
Log files:

❏ Several sources
❏ Different structures

But, possess different informations

❏ One file
❏ One standard format

Merging:

Merging:

❏ Enforce ‘time’ monotonicity
between sources

❏ Maintain each source’s
sequence order

Log formats:

❏ Xml
❏ Structured string
❏ Unstructured string

Standard format with JSON style:

❏ Each event:
❏ {time, source, severity, data}

❏ List of events:
❏ [{time, source, severity, data}, {}, …, {}]

Classifying: 1/2

All existing events are not classified and the “data” attribute is unstructured.

Classification = recognize pattern in each event

❏ Matching unstructured string with known patterns
❏ Extracting useful data and create new user-defined attributes

Assign each event matching a specific pattern a unique “Id”

❏ Contain specific attributes
❏ Data can be used confidently for analysis

Classifying: Field names and values (tags) 2/2
MODMED project will propose standard field names and values (tags)

Conservative rules:

❏ Do not rely on case to distinguish names (but_use_it_IfYouLike)
❏ Begin with a letter [a-zA-Z] (‘_’ is legal but reserved)
❏ Continue with as many letters [a-zA-Z], digits [0-9], or ’_’

(compatible with C++, Python, Javascript, Xml, CEE and much more)

https://cee.mitre.org/

Relating Events:

Relate events = recognize patterns in the sequence of events

❏ Simplify the sequence
❏ Complement each event with data from related events

❏ For example, the entry/exit of a state

Improving Trace Points
1. Use Qt categories consistently with architecture (reuse namespaces)
2. Use semi-structured event data consistently

1. Adopt and extend a dictionary of field names and values (tags)
2. Define Bind<_,ImportantDataType>

3. Trace input data
1. At user and hardware interfaces
2. At module interfaces

4. Add tracepoints where you may have raised an exception
5. [Trace functions enter/exit with input/output arguments]

(not easy for now)
6. [Group tight trace points inside a ScopedMessage]

(not in open source version)

Exploring Large Logs Interactively 1/3
Python code for normalizing semi-structured logs:

Unordered event dictionary → Ordered fields tuple

1. List important field names in the order they should appear
2. Keep all other data in ‘other’ field
3. Push less important metadata to the right

writeTSV(‘time’, ‘appState’, ‘severity’, ‘id’, ‘other’, ‘source’, ’pid’, ‘tid’)

Exploring Large Logs Interactively 2
MS Excel as a large log viewer
(up to 1M events, 250MB+)

❏ Visualising time → → local ↕ ↓ relative
❏ Visualising appState → →
❏ Visualising severity ↴

Exploring Large Logs Interactively 3/3
❏ Filtering (severity, category/id, data)

❏ Bookmarking
with colors

Developers Survey

Please answer our survey and see the results:

http://goo.gl/fAZqhY

https://goo.gl/fAZqhY
https://goo.gl/fAZqhY

