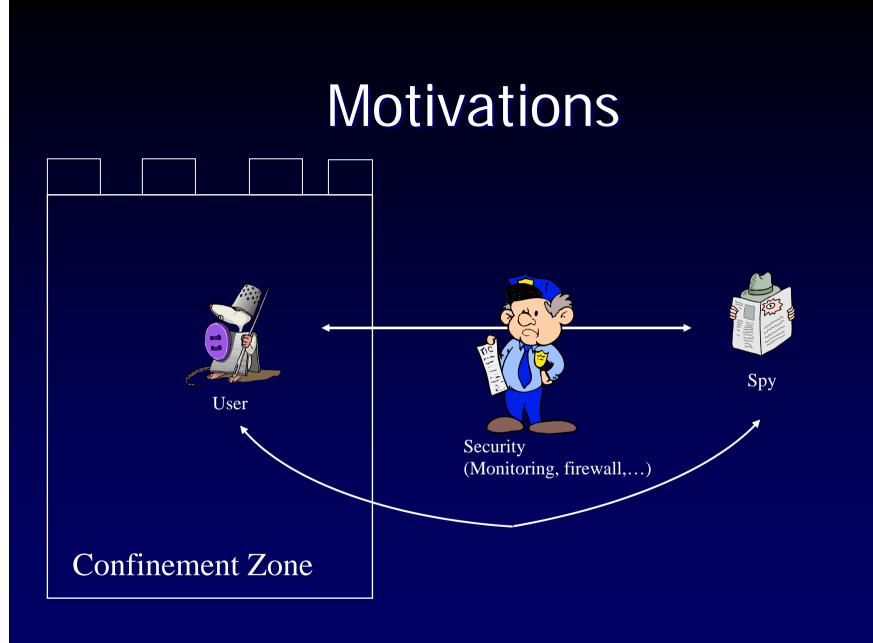
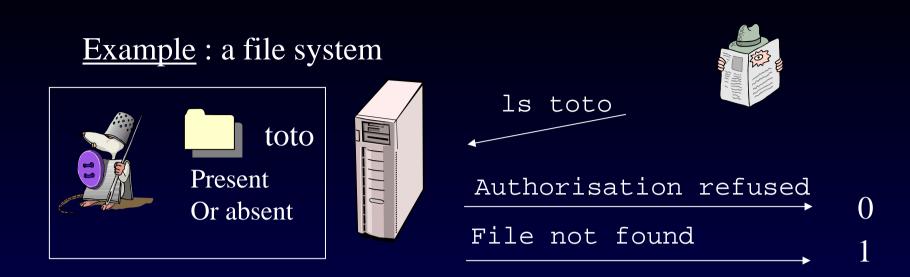
Covert channels detection : using games with scenarios

Loïc Hélouët Marc Zeitoun Aldric Degorre INRIA Rennes LIAFA ENS Cachan





threat : performance, billing, security, ...
all channels can not be eliminated

Recommendations:

- Identify covert channels
- Illustrate their use through scenarios
- Compute their bandwidth

Non interference

Current trend : Covert channels defined as an interference property

- a model S of a system
- two models of processes U,V that should not communicate

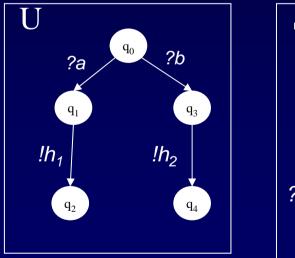
show that $(U \parallel S) \parallel V \neq S \parallel V$

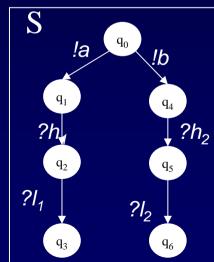
« what U does affects what V sees or can do »

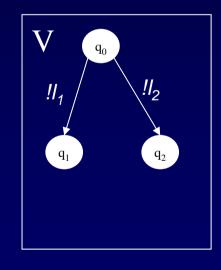
Reachability problem No liveness ...

Models

- Automata or algebras
- Synchronous communications
- Does not consider causality





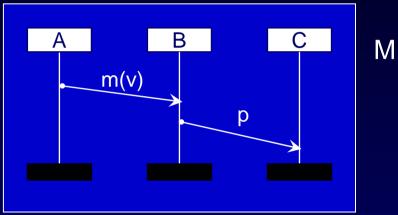


PLAN

- Message Sequence Charts
- **Games**
- Covert Channels as a game ?
- Conclusions & perspectives

Message Sequence Charts

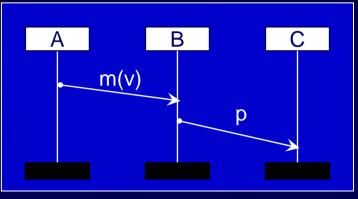
bMSC M



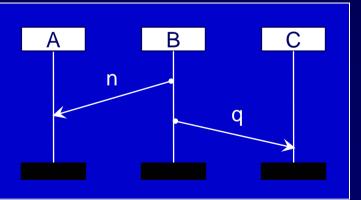
= < E, \leq , Act, P, α , ϕ , M >		
E E	: eve	ents
■ ≤ <u></u> ⊂ E >	x E : cau	usal order
Act	: act	ion names
P	: Ins	tances
$\bullet \phi : E \to P : locality$		
α :Ε-	→ Act	: labeling
■ m ⊆ E	ХE	: messages

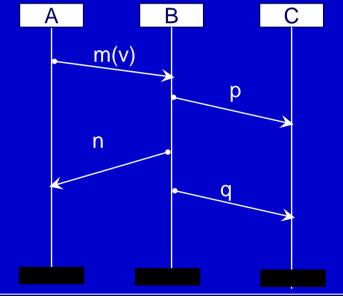
Sequential composition

bMSC M1



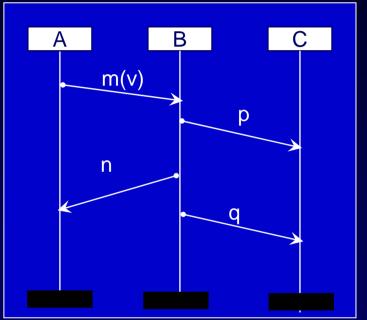
bMSC M2



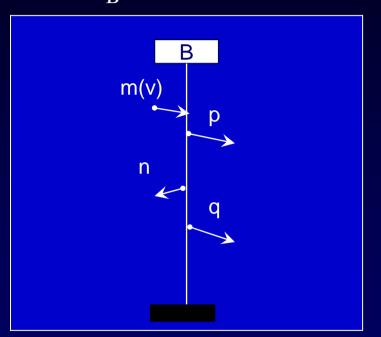


Projection

bMSC M

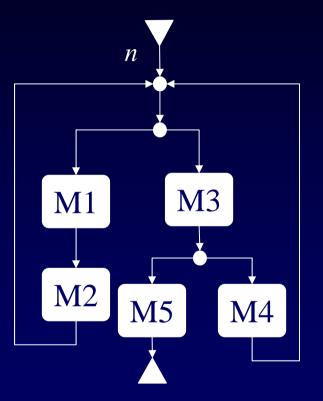


bMSC $\pi_B^{}(M)$



 $\pi_B(M) = \{ \ ?m(v) \ . \ !p \ . \ !n \ . \ !q \ \}$

HMSC



$H = (N, \rightarrow, \mathcal{M}, n_0)$

■ N : nodes ■ $\rightarrow \subseteq N \times \mathcal{M} \times N$: transitions ■ \mathcal{M} : bMSCs ■ n_0 : initial node

HMSC

n M1 M3 M2 M5 M4

Paths :

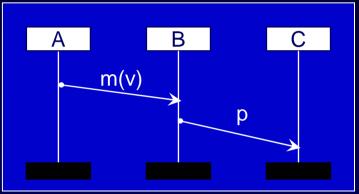
 $p=(n_1,M_1,n_2).$ (n_2,M_2,n_3) ... (n_k,M_k,n_{k+1})

Associated orders :

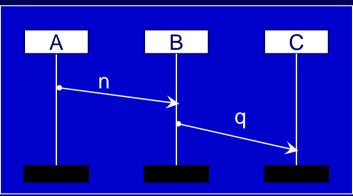
$$O_p = M_1 \circ M_2 \circ \ldots \circ M_k$$

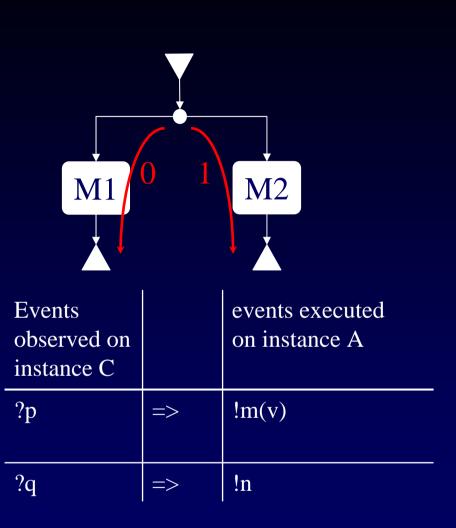
Choices

bMSC M1



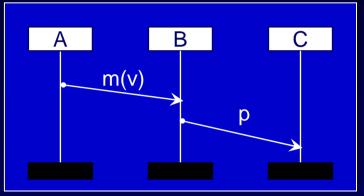
bMSC M2



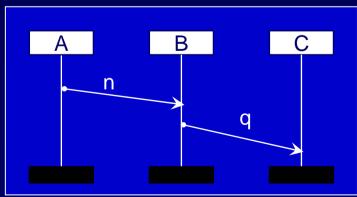


A simple way to pass info ...

bMSC M1



bMSC M2



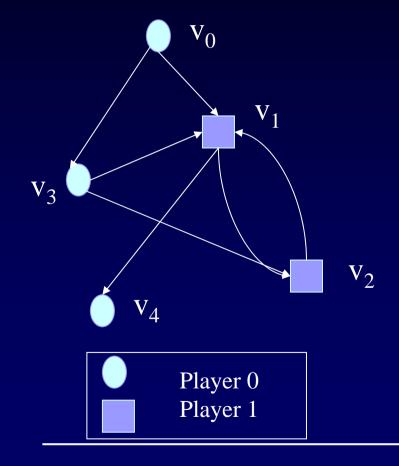
More elaborated encoding strategies ?

M2

M1

Transducers

Games



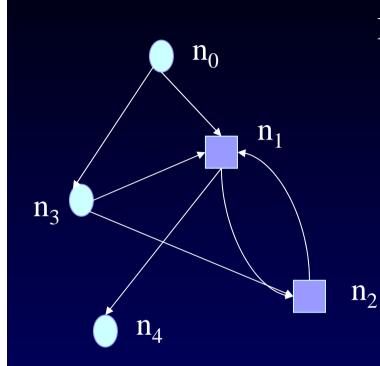
<u>Arena</u>: Vertices V Edges E 2 players : $\sigma = \{0, 1\}$

<u>Winning conditions</u> :

. . .

Win $\in \mathcal{P}(V)$ (Buchi Game) Win $\subseteq \mathcal{P}(V)$ (Muller Game)

14



Play : <u>finite</u> : $v = v_{il} \cdot v_{i2} \dots v_{ik}$ where v_{ik} sink node <u>infinite</u> : $w = v_{jl} \cdot v_{j2} \dots \in V^{\omega}$

$$Inf(w) = \{v \mid \} \forall i, \exists j > i, v_j = v\}$$

Player 0 wins a play v iff $v = n_{il}.n_{il} \dots n_{ik}$ finite and P_l 's turn or $w = n_{jl}.n_{j2} \dots \in V^{\omega}$ and $Inf(w) \cap Win \neq \emptyset$ (Büchi) $Inf(w) \in Win$ (Muller)

Games

Player 0

Player 1

Strategy

 n_0 n_1 n_3 n_2 n_4 Player 0 Player 1

Function $f: V' \subseteq V \rightarrow \mathcal{P}(E)$

Win = $\{n_{1,n_{2}}\}$

Strategy for P₁: $n_1 \rightarrow \{ (n_1, n_2) \}$ $n_2 \rightarrow \{ (n_2, n_1) \}$

Winning subset for P_{σ} :

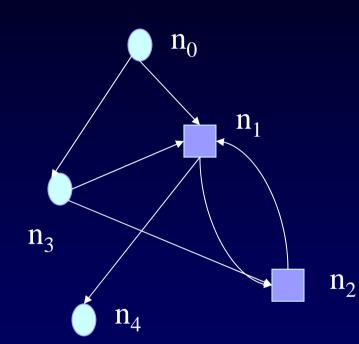
subset for which a strategy for P_{σ} exists

Games

Games :

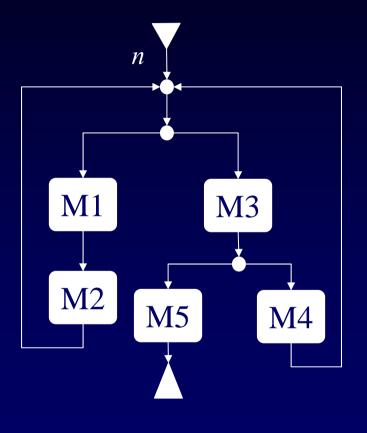
• Several problems resume to the Existence of a strategy for a given game

• Solutions with complexity



Games

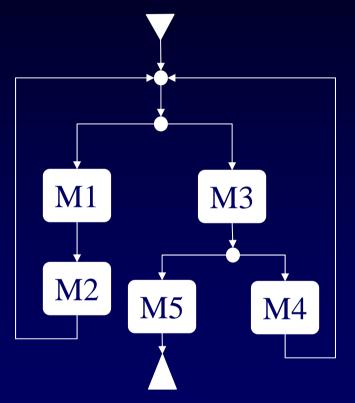
Covert Channel detection



<u>Hypothesis :</u>

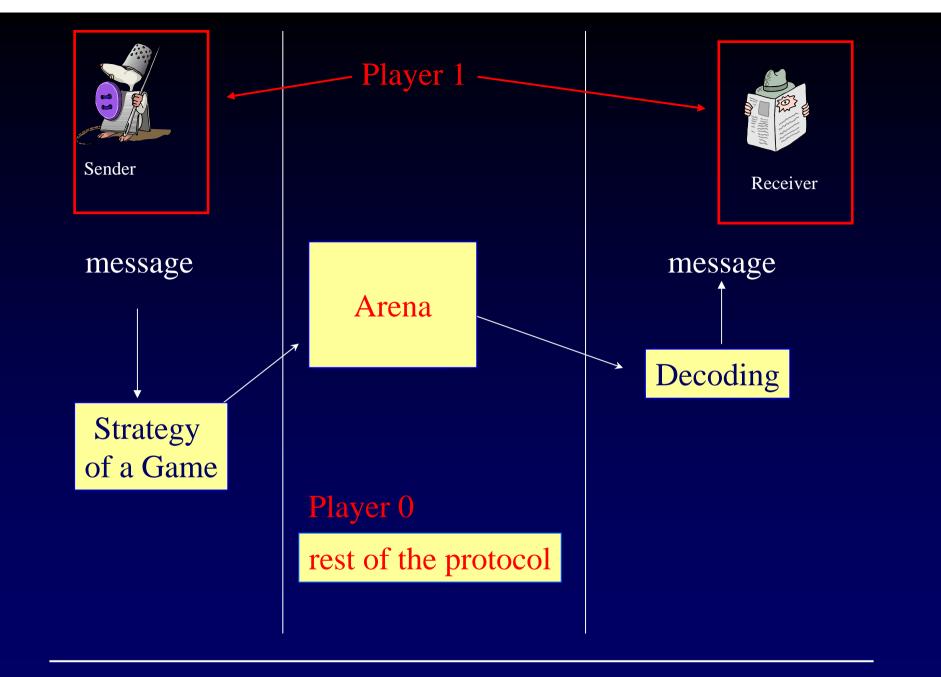
To transmit a message of arbitrary length, one needs to iterate some behaviors :

Covert channels only appear in presence of strongly connected components.



Consider a covert channel as a game where a pair Sender/Receiver wins if they can transmit messages of unbounded size

Stay in strongly connected components
 must be able to transmit information

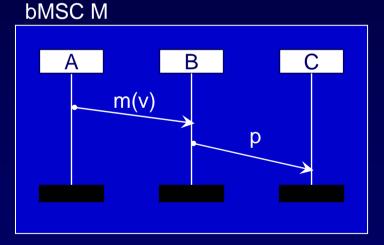


STEP 1 : Find encoding nodes

Definition :

A bMSC *M* is controlled by an instance p iff $\exists ! e = min(M)$ et $\varphi(e) = p$

M controlled by *A*



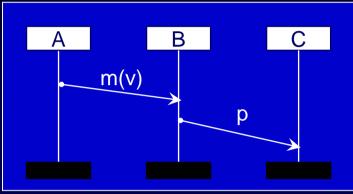
Definition :

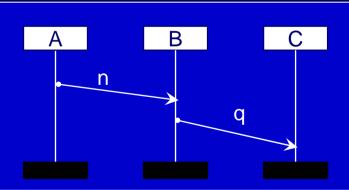
A choice node *n* in a HMSC is **controlled** by an instance *p* iff for all path P_i , $i \in 1..K$ starting in *n* O_{Pi} controlled by *p*

(idem local choice) n M1 M2

Construction of an arena

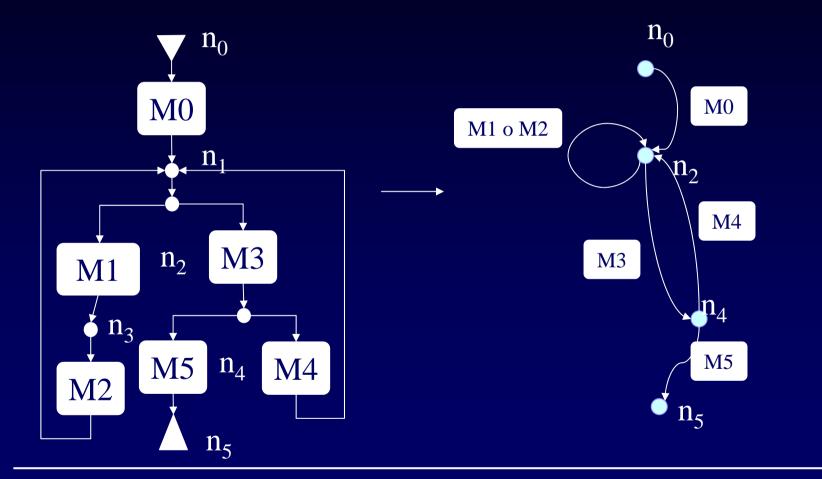
bMSC M1

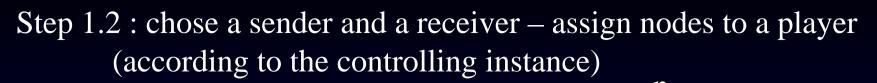


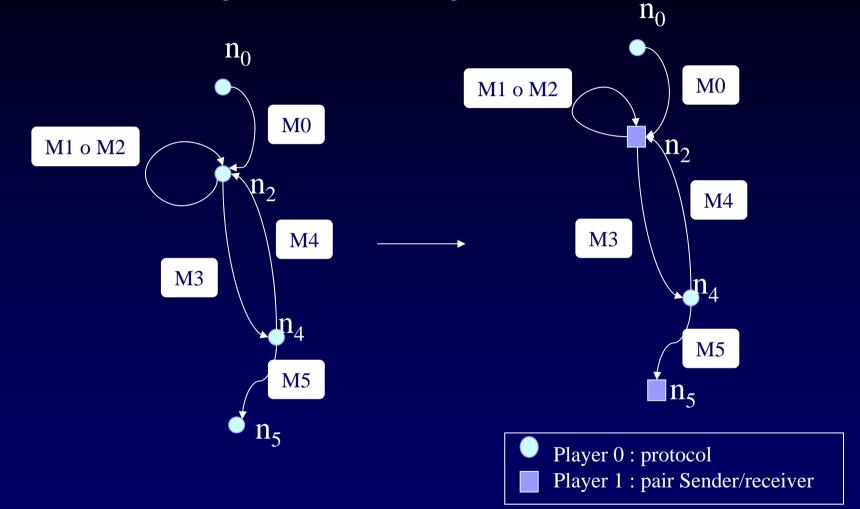


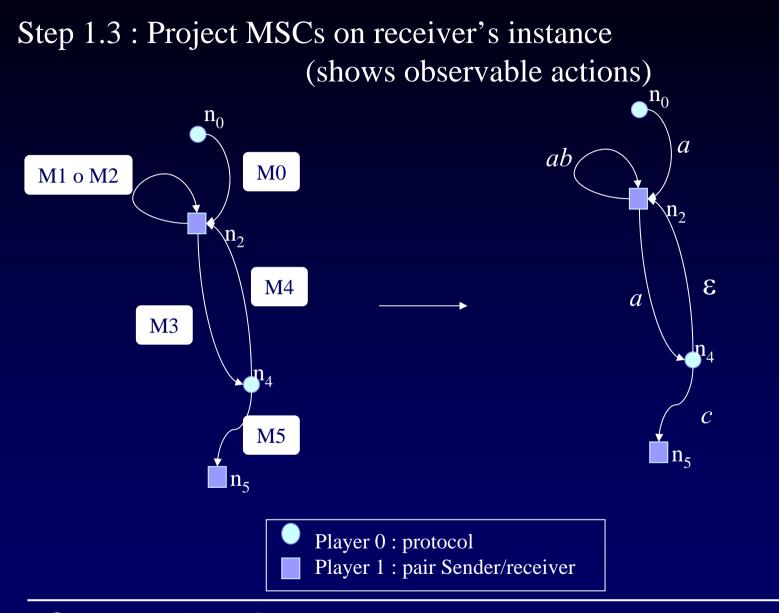
Reduction of a HMSC to an Arena

Step 1.1 : consider choice nodes only:

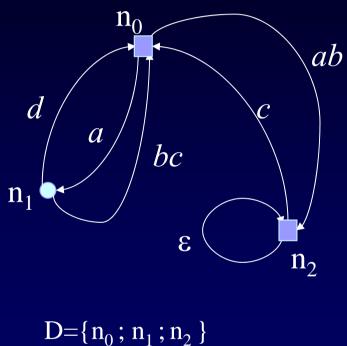








Property A : Ambiguity



$$A(D,n_0)$$

 $A(D,n_1)$
 $A(D,n_2)$

D strongly connected component

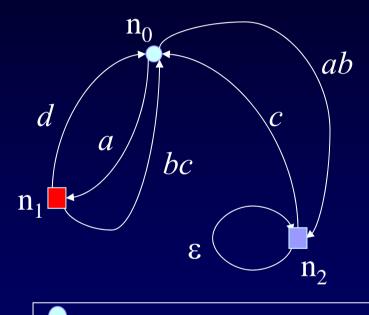
A(D,n) iff : *n* not controlled by *sender* or

n controlled by *sender* and $\forall t_1, t_2, t_1 = (n, b, n_1') t_2 = (n, b, n_1')$

paths starting with t_1 or t_2 cannot be reliably differentiated by the receiver.

Partition of the arena

Encoding nodes



Player 0 : protocol
Player 1 : pair Sender/receiver
Player 1 : Encoding node

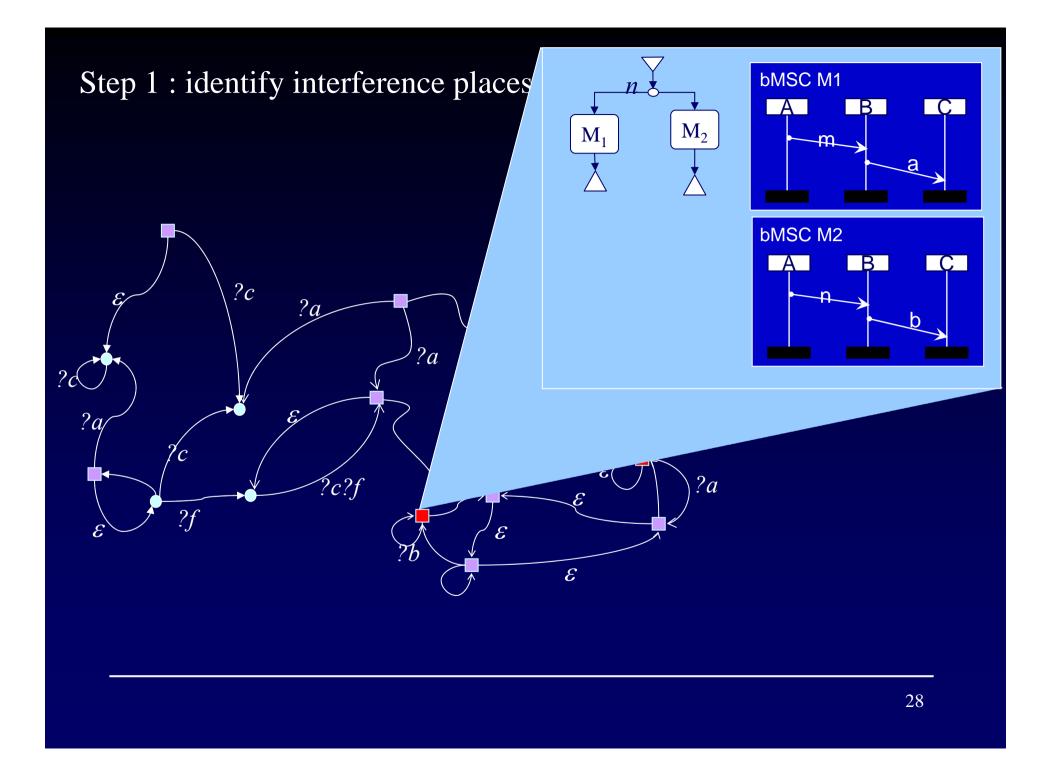
 $D=\{n_0; n_1; n_2\}$ A(D,n_0) (not controlled by sender)

¬A(D,n₁)
 (two different observable choices)

 $A(D,n_2)$

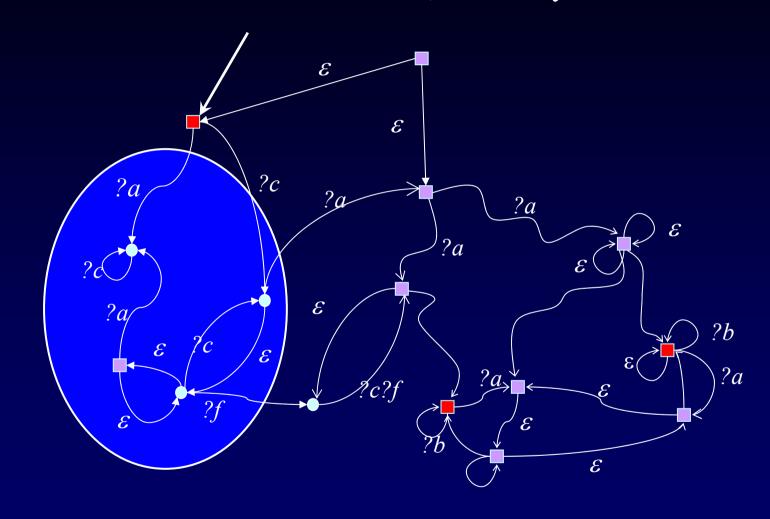
(a single observable choice: *c*)

Partition of the arena

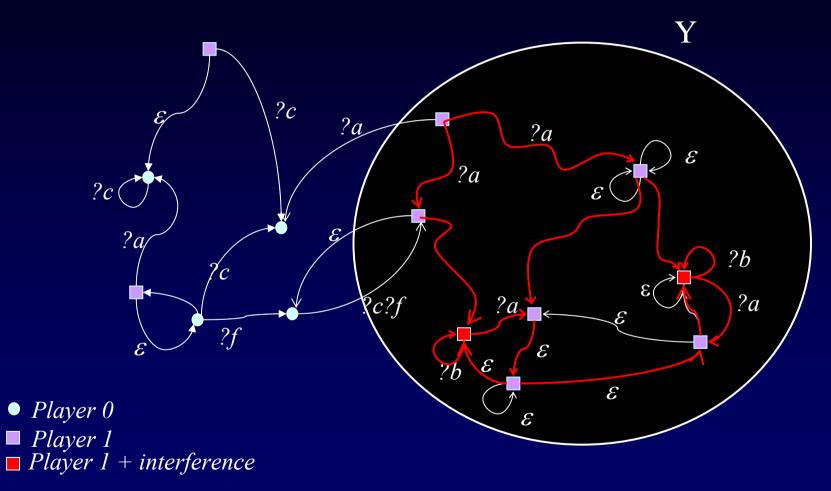


Interference places : no liveness !

(is it really a covert channel ?)



Step 2 : Search a winning subset Y in which player 1 has a winning strategy f_Y to pass infinitely often through red Vertices while producing observable events



When Y and f_{Y} exist

Receiver's Observation

?b

!e

?f

?b

?a

?f

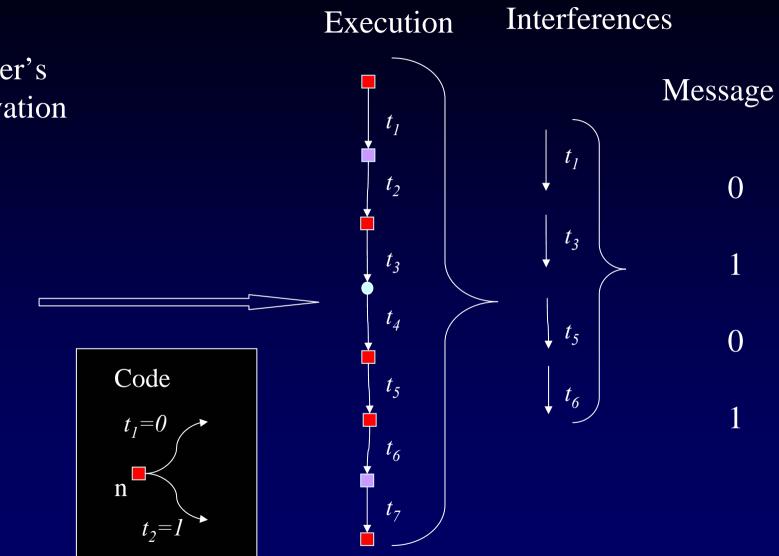
?f

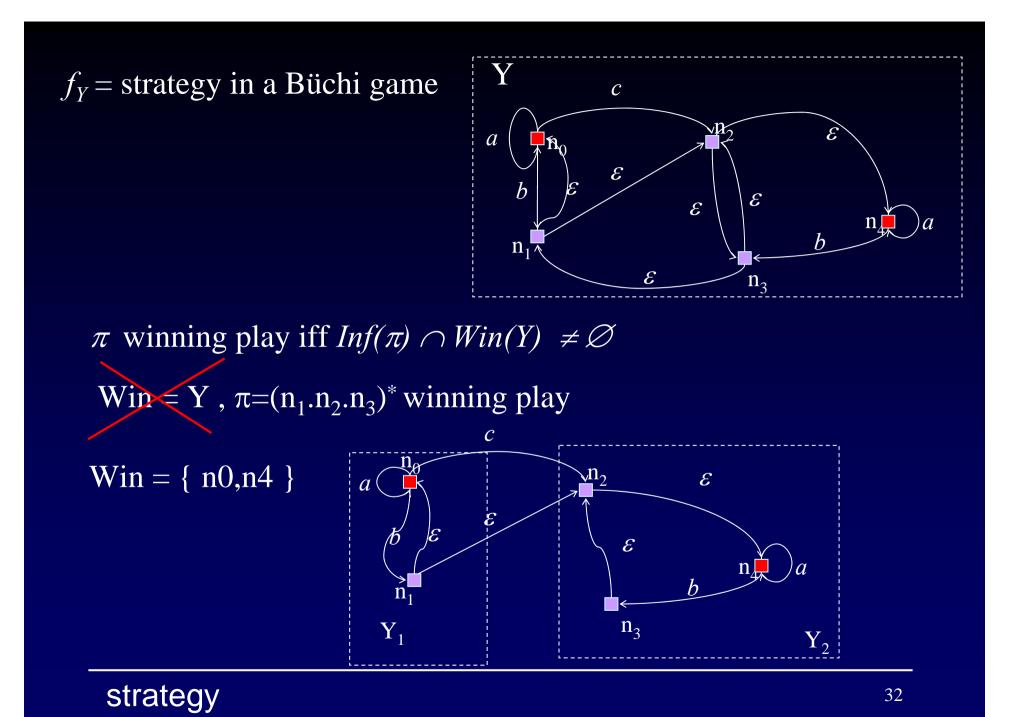
!x

?c

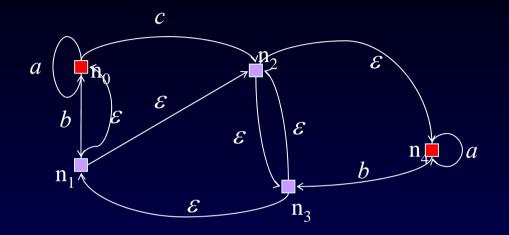
?d

?e





 f_Y = strategy in a Muller Game $G = (A_H, Win(Y))$

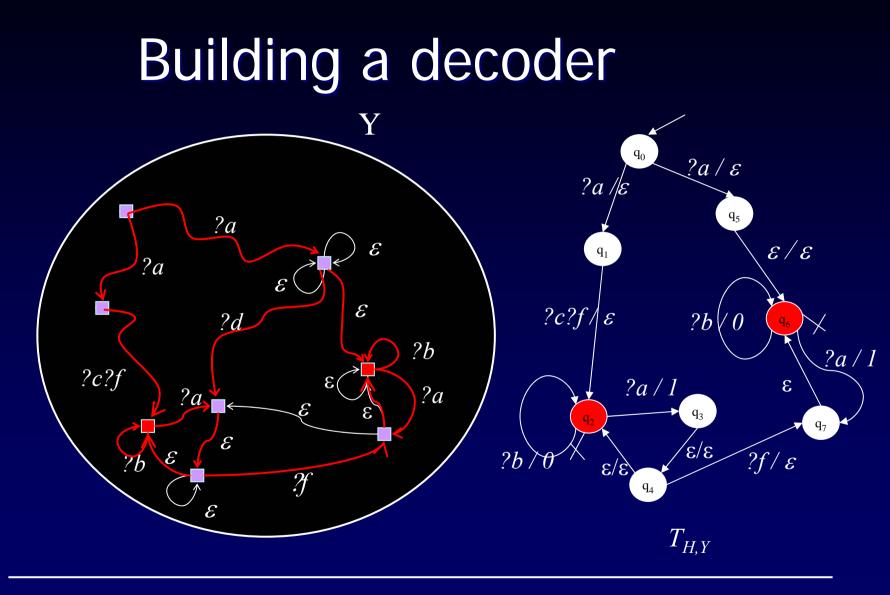


 π winning play iff $Inf(\pi) \in Win(Y)$ Not a purely positional game

 $Win(Y) = 2^{Y} \{ D \in 2^{Y} \mid D \ scc \land \forall d \in D, \ E(D,d) \}$

 $Win(Y) = 2^{Y} - \{n_{1}, n_{2}, n_{3}\}$

 f_Y uses more transitions (under certain memory conditions)

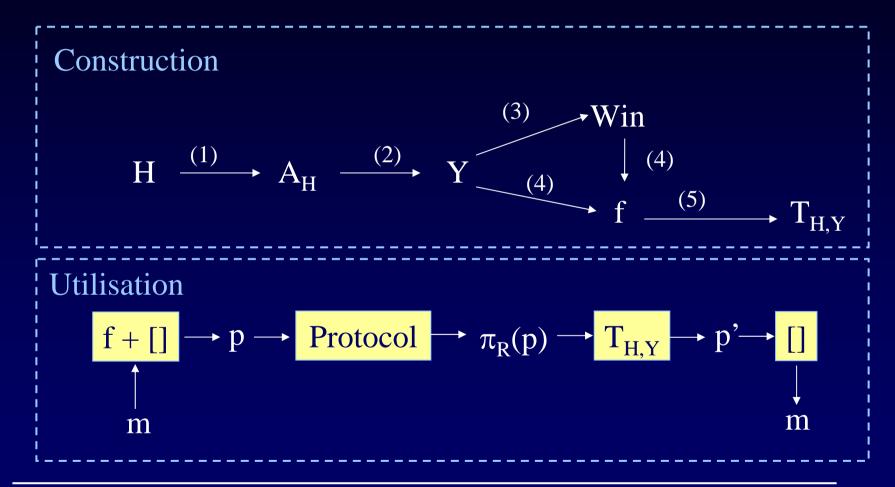


Theorem :

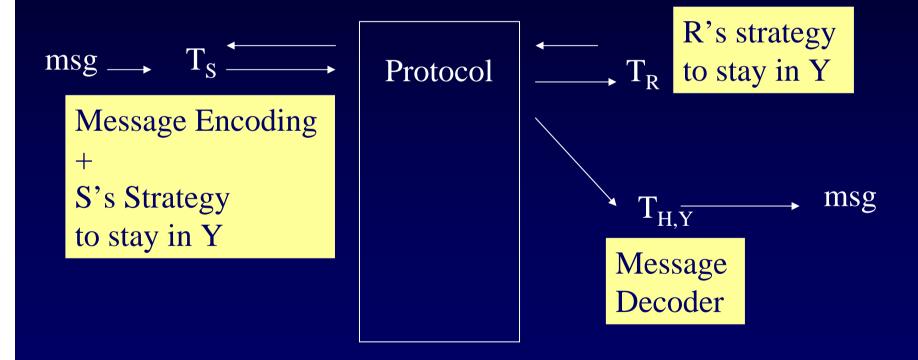
Let *H* be a HMSC, and $A_{\rm H}$ be the associated arena. Let *Y* be the winning set computed from $A_{\rm H}$, *Win(Y)* be the corresponding winning subsets and f_Y be a strategy for the Muller game $(A_{\rm H}, Win(Y))$. If $T_{H,Y}$ is functional, then

Transmission of any message with a bounded number of decisions !

Conclusion



But we are in a distributed world ... Which leads to a more generic framework with UNCERTAINTY and DISTIBUTION



Conclusion

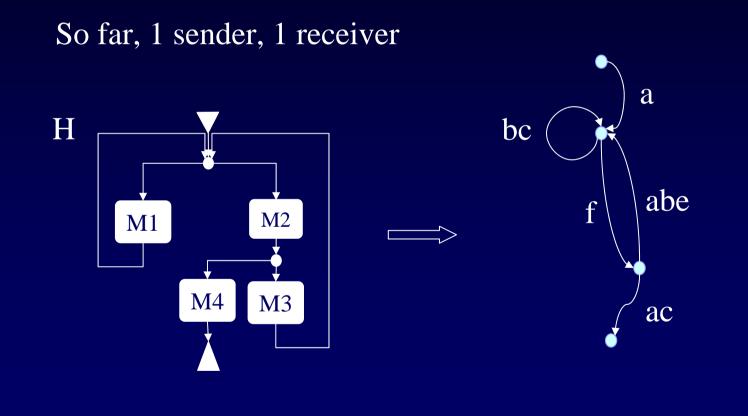
Once a potential covert channel is found :

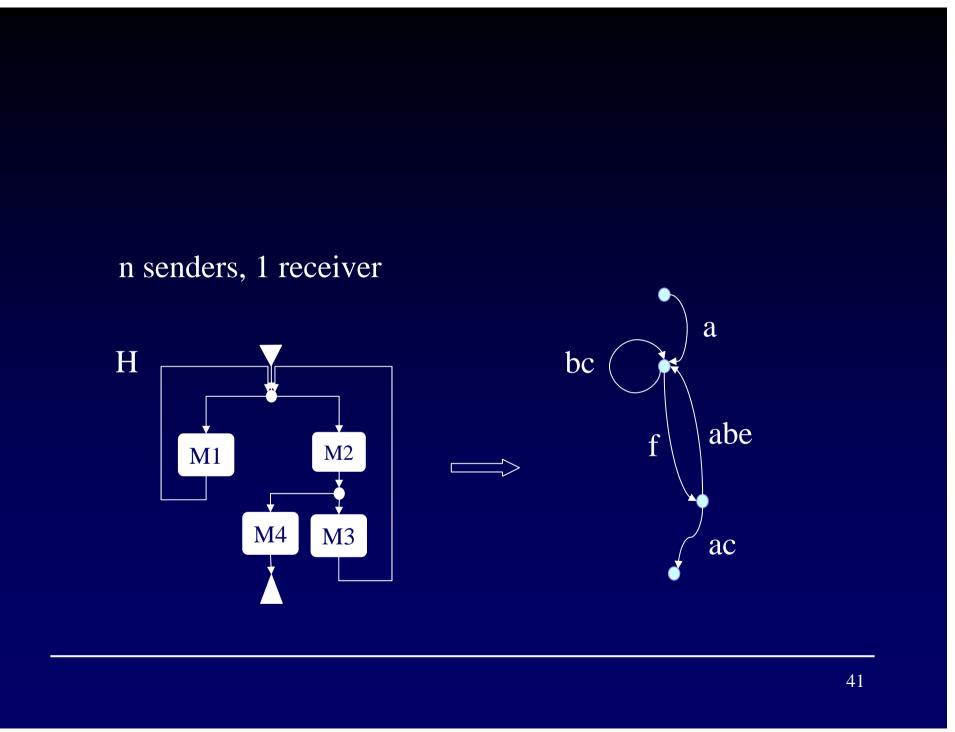
compute its theoretical bandwidth
test on an implementation
Scenarios are provided for free !

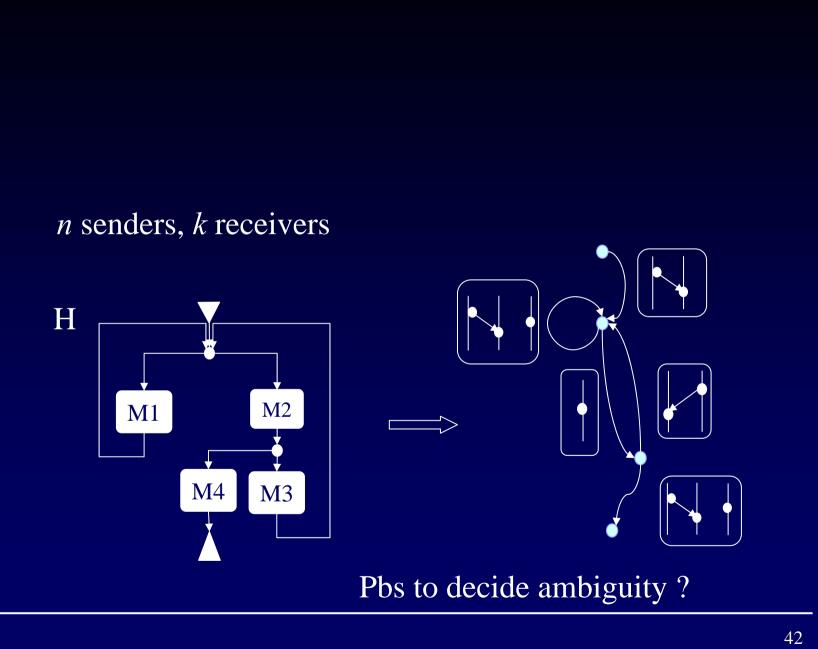
Future research directions:

Distributing a strategy ?
Accept uncertainty in decoding
Study CCs with information theory
Teams of sender/receivers
Generalize non-interference using games

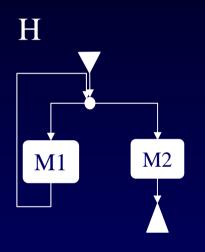
HMSCs vs automata ?



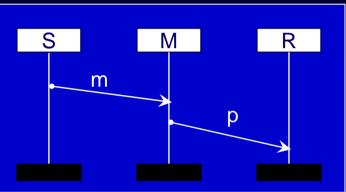




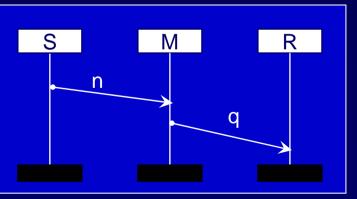
More covert channels



bMSC M1



bMSC M2



43