Monitoring Information Flow

Gurvan Le Guernic

IRISA - Lande

June 16, 2005 / ACI POTESTAT

Gurvan Le Guernic Monitoring Information Flow

e Introduction
@ Goal
@ Non-interference
@ Preliminaries

e Tracking Information Flow
@ Semantics
@ Properties
@ Example
@ Problem

e Testing
e Yes, but . ..

e Conclusion

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Goal

Any External Program

<f,g>
Input Output
o o — Interface —— <f,g> — Interface “| 9(an; o)
ol <_ Internal Store - f(on, o)

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Goal

Any External Program
<f,g>

’Semantics with Iﬁermation Flow Monitoring‘

Input Output | .~
- Interface —+— <f, g > —b Interface 2. 9 (o1)
Oh, 0] <

L Internal Store et f(on, o)

@ Vo € PublicOutput :
g’'(o1)(0) =g(on,01)(0) VvV g'(a)(0) =L

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

h
input stores [l

program :

output stores [

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

msosl T | B WD BB

program :

wosost W B H M B

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

msosl T | B WD BB

program :

wosost W B H M B

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

msosl T | B WD BB

program :

wosost W B H M B

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

e A

program :

wosost W B H M B

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

e A

program :

ot W é i B

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

h
input stores [l i i 5

program :

h
output stores - i Q I H

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

h
input stores [l i i 5

program :

h
output stores - i Q I H

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

H r =
input stores ['l i i' 5
Lk

program :

h
output stores - i Q I H

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

input stores ["

program :

output stores [: "

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

________________ .

h

input stores 1 l I I l I !
program : Hl

output stores [: '

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

________________ .

h

input stores 1 l I i l I !
program : Hl

output stores [: '

Gurvan Le Guernic Monitoring Information Flow

Introduction

Goal Non-interference Preliminaries

NON-INTERFERENCE

Presentation of the concept of non-interference

@ Introduced by Goguen and Meseguer
@ Property of a program respecting secrets confidentiality

input stores

program :

output stores

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

NON-INTERFERENCE

Formalization of non-interference

Definition 1 (Sabelfeld & Myers)
Vs1,S2 € S. 51 = S2 = [C]s1 ~L [C]s2

@ \Weaknesses :

e not fitted for monitoring
o statically difficult

X:=0;tmp:=0;
if test1(l) then tmp := h else skip end;
if test2(l) then x := tmp else skip end;
tmp :=0;

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Non-interfering execution

Main Goal : being able to detect executions respecting the
confidentiality of secret data independently from other
executions

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Non-interfering execution

Main Goal : being able to detect executions respecting the
confidentiality of secret data independently from other
executions

Definition 3 (Non-interfering execution)

Vs;. NIExedC,s1) = Vs,.S1 = S2 = [C]s1 =L [C]s2

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Non-interfering execution

Main Goal : being able to detect executions respecting the
confidentiality of secret data independently from other
executions

Definition 3 (Non-interfering execution)
Vs;. NIExedC,s1) = Vs,.S1 = S2 = [C]s1 =L [C]s2

5

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Non-interfering execution

Main Goal : being able to detect executions respecting the
confidentiality of secret data independently from other
executions

Definition 3 (Non-interfering execution)

Vs;. NIExedC,s1) = Vs,.S1 = S2 = [C]s1 =L [C]s2

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Non-interfering execution

Main Goal : being able to detect executions respecting the
confidentiality of secret data independently from other
executions

Definition 3 (Non-interfering execution)
Vs;. NIExedC,s1) = Vs,.S1 = S2 = [C]s1 =L [C]s2

_____________________ -
I I I I I ...I
U= — — = _____l

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Some properties

Fact 4 (Predicate Safg
Vs, € S. Safg[C]s1) = NIExeqC, s;)

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Some properties

Fact 4 (Predicate Safg
Vs, € S. Safg[C]s1) = NIExeqC, s;)

Corollary 5 (Definition of low-equivalence is symmetric)

Vs;. NIExedC,s;) = (Vs2. s2 =L S1 = NIExedC, sy))

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Some properties

Fact 4 (Predicate Safg
Vs, € S. Safg[C]s1) = NIExeqC, s;)

Corollary 5 (Definition of low-equivalence is symmetric)
Vs;. NIExedC,s;) = (Vs2. s2 =L S1 = NIExedC, sy))

Corollary 6
Vs;. Safd[[C]s1) = (Vs2. S2 =L S1 = NIExedC,s;))

Benefit : one execution may be sufficient to deduce a property
of many executions

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

Language’s Grammar

= C
e = eope | id | v
S == ifethenSelseS end
| while e do S done
| id:=e
| skip
| S;S

id stands for any variable identifier (name)

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)

@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)

@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different

@ semantics updates tags

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)

@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different

@ semantics updates tags
o Safeiff low outputs are tagged with L

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)

@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different

@ semantics updates tags
o Safeiff low outputs are tagged with L

@ when branching on a condition which is :

o low : execute the designated branch
@ high : merge the result of executing the designated branch
and analyzing the other one

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)
@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different
@ semantics updates tags
o Safeiff low outputs are tagged with L

@ when branching on a condition which is :
o low : execute the designated branch
@ high : merge the result of executing the designated branch
and analyzing the other one

1:=0;
if h then skip else ? end;

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)
@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different
@ semantics updates tags
o Safeiff low outputs are tagged with L

@ when branching on a condition which is :
o low : execute the designated branch
@ high : merge the result of executing the designated branch
and analyzing the other one

|:=0;
if h then skip else skip end;

Gurvan Le Guernic Monitoring Information Flow

Introduction Goal Non-interference Preliminaries

General Description

@ general idea :
o dataaretagged (LC T)
@ | (public) = same value for any low-equivalent execution
@ T (secret) = value may be different
@ semantics updates tags
o Safeiff low outputs are tagged with L

@ when branching on a condition which is :
o low : execute the designated branch
@ high : merge the result of executing the designated branch
and analyzing the other one

[:=0;
if h then skip else | :=1 end;

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Semantics judgments

(Id — Value); (Id — Tag) + Expr | Value : Tag

(Id — Value); (Id — Tag) + S | (Id — Value) : (Id — Tag) : P(Id)

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Semantics judgments

(Id — Value); (Id — Tag) + Expr | Value : Tag

(Id — Value); (Id — Tag) + S | (Id — Value) : (Id — Tag) : P(Id)

Example 8

if h then
| :=true;
if I then skip else x :=1

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

The analysis

[(Id — Value); (Id — Tag) + SJ¥ = (D, X)

e D=P(Id x Id)
e over-approximation of the dependencies between initial and
final values of variables
° X= P(Id)
e over-approximation of the set of variables which may be
assigned to

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (1)

opte v :t®
o,p Fid :=e || ofid—v] : p[lid—t¢] : {id}

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (1)

opte v :t®
o,p Fid :=e || ofid—v] : p[lid—t¢] : {id}

oopkFelv: L opkF Sy ov:py: X
pe = (Xt x {TH U ((Id — Xi) x {L})
o;p b if ethen Syye €lse Sgse €Nd || oy - py I pe @ X

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

o, p F ifethen Syye else Sgse €nd |}

Gurvan Le Guernic nitoring Information Fl

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T

o, p F ifethen Syye else Sgse €nd |}

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X

o, p F ifethen Syye else Sise €nd | oy

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X
[o: p F S—]% = (D, X)

o, p F ifethen Syye else Sise €nd | oy

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X

o;p F ifethen Syye else Sise €nd | oy

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X
Xif = Xy UX
o;p F ifethen Syye else Sise €nd | oy o Xif

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X
Xif = Xy UX Pe = (Xif X {T}) U
o;p F ifethen Syye else Sise €nd | oy o Xif

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X
Xit =Xy UX pe=(Xig x {T}) U ((Id —Xi) x {L})
o;p F ifethen Syye else Sise €nd | oy :

Xit

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Rules (2)

ocopkFelv:T opt Sy dov:pv i X
[o: =S = (B.X) v = M. Ly ey PY)
Xif =Xy UX pe=(Xg x {THU(Id — X¢) x {L})
o,p F ifethen Syue €lse Sqse €nNd | oy : pv T p—y L pe : Xt

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Properties of the semantics

“[o; p - S]P is not a too bad information flow analysis”

For any command C, “total” value store o, and o, and
“well-tagged” tag store p, such that :

Q [CI7,, #
Q Safe([[C]]Ulp
if 01 =|; 02 then |[C]]a'1 o Lo ":C]]crz o

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Acceptability

(6,)A() is an acceptable result if :
(D, X) = (o,pF S)

@ A syntactic analyzer
e simple
e quite efficient
e [o;p+ CJ¥s = (D, X)
o X : set of all identifiers assigned to
o D:Wx e)A(, 5(x) =1Id and vy §Z>A(, 6(y) ={y}

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Example

Example 10
X:=0;
if | then
if h then x := 1 else skip end
else skip end

a(l) a(l)

o(h) True | False o(h) True | False
True 1 0 True T 1
False 0 0 False T 1

TaB.: [P ,(X) Tag.: [P]7.,()

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Limitations

Fact 11 (Safeis notNIExec)
Vs; € S. Safg[[C]s1) # (Vs2 € S. s, = s1 = Safd[C]s2))

Gurvan Le Guernic Monitoring Information Flow

Tracking Semantics Properties Example Problem

Limitations

Fact 11 (Safeis notNIExec)
Vs; € S. Safg[[C]s1) # (Vs2 € S. s, = s1 = Safd[C]s2))

Example 12

X:=0;
if h then

if | then x := 1 else skip end
else skip end

a(l) a(l)

o(h) True | False o(h) True | False
True 1 0 True T 1
False 0 0 False T T

TaB.: [P ,(x) Tag.: [P]7.,()

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while ()

@ run one execution
o Safe— exit YES
e low outputs different from previous executions — exit NO

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while (arbitrary limit not reached)

@ run one execution
o Safe— exit YES
e low outputs different from previous executions — exit NO

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while (arbitrary limit not reached [or all paths done])

@ run one execution
o Safe— exit YES
e low outputs different from previous executions — exit NO

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while (arbitrary limit not reached [or all paths done])

@ run one execution
o Safe— exit YES
e low outputs different from previous executions — exit NO

Efficiency increased if :

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while (arbitrary limit not reached [or all paths done])

@ run one execution
o Safe— exit YES
e low outputs different from previous executions — exit NO

Efficiency increased if :

@ statements branching on high conditions buried deeper in
the program

Gurvan Le Guernic Monitoring Information Flow

Testing
Testing protocol

A protocol for testing a set of executions starting in one class of
low-equivalent inputs :

@ while (arbitrary limit not reached [or all paths done])

@ run one execution
e Safe— exit YES

e low outputs different from previous executions — exit NO

Efficiency increased if :

@ statements branching on high conditions buried deeper in
the program

@ executions picked up take different branches of statements
branching on high conditions

Gurvan Le Guernic Monitoring Information Flow

Yes, but ...

Partial evaluation & information flow analysis

@ statically :

e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered
@ dynamically :
e requires “smart” partial evaluation and IF analysis

[h [T]T]I]T]

while (c_ > 0)

()

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

e dynamicanalysis:[I [I [1] h 1]

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

[h[T]T]I]T] fI]h[T[I[T)]

while (c. > 0) cL=3 (T I h]T]T)

(S == = fCTT]T]h]T]
e dynamicanalysis:[I [I [1] h[1I]

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

[h[T]T]I]T] fI]h[T[I[T)]

while (c. > 0) cL=3 (T I h]T]T)

(S == = fCTT]T]h]T]
e dynamicanalysis:[I [I [1] h[1I]

|
o typesystem:[h [h[h[h]l]

Gurvan Le Guernic Monitoring Information Flow

Partial evaluation & information flow analysis

@ statically :
e infinitely many low-equivalent classes
o difficult to know which “residual programs” can be
encountered

@ dynamically :
e requires “smart” partial evaluation and IF analysis

(A [TTTTIT] Ui JI[I]1)
while (c > 0) cL=3 (T h][T]T)
(= =) (TTTIT1AIT)
e dynamicanalysis:[I [I [1] h[1I]
o typesystem:[h [h[h[h]l]
e information flow logic : [T [I [I [h [T |(ciark & Hankin & Hunt)

Gurvan Le Guernic Monitoring Information Flow

Conclusion
Conclusion

@ A non-interference definition with a reduced scope :
@ non-interfering execution

@ A “smart” semantics
@ A predicate for detecting non-interfering executions

Gurvan Le Guernic Monitoring Information Flow

Conclusion
Conclusion

@ A non-interference definition with a reduced scope :
@ non-interfering execution

@ A “smart” semantics
@ A predicate for detecting non-interfering executions

= Possible to detect the “safe” behavior of a set of executions
from only one of those executions

Gurvan Le Guernic Monitoring Information Flow

Conclusion

Monitoring Information Flow

Gurvan Le Guernic

IRISA - Lande

June 16, 2005 / ACI POTESTAT

Gurvan Le Guernic Monitoring Information Flow

	Introduction
	Goal
	Non-interference
	Preliminaries

	Tracking Information Flow
	Semantics
	Properties
	Example
	Problem

	Testing
	Yes, but …
	Conclusion

