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1 Overview

The POTESTAT project addresses the problem of testing security policies for
open networked systems. It is a joint project of 5 teams in 3 laboratories.
Participants at the date of May 1st, 2006 are:

• Thierry Jéron (CR Inria, IRISA - Vertecs)

• Hervé Marchand (CR Inria, IRISA - Vertecs)

• Vlad Rusu (CR Inria, IRISA - Vertecs)

• Löıc Hélouët (CR Inria, IRISA - Distribcom)

• Thomas Jensen ((CR Inria, IRISA - Lande)

• Gurvan Le Guernic (PhD, IRISA - Lande, from Oct 2002-MENRT +
mobility grant from MENRT)

• Jérémy Dubreil (PhD IRISA - Vertecs - from March 2006 - INRIA con-
tract)

• Jean-Claude Fernandez (PR, Verimag - DCS)

• Laurent Mounier (MCF, Verimag - DCS)

• Cyril Pachon (PhD, Verimag - DCS, 2001–October 2005, supported by
contract)

• Roland Groz (PRASS, LSR - Vasco)

• Marie-Laure Potet (PR, LSR - Vasco)

• Jean-Luc Richier (CR CNRS, LSR - Vasco)

• Keqin Li (Post-Doc CNRS, LSR - Vasco, Dec 2005-Nov 2006)

• Vianney Darmaillacq (PhD, LSR - Vasco, MENRT from Oct 2003)

The initial approach to the problem was based on previous experience of
the partners. We had experience on the use of formal models either to test the
conformance of a distributed implementation to a specification (conformance
testing for network protocols) or to analyse downloaded code (where testing can
complement static analysis techniques). Based on this background, we proposed
four directions of investigation.
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1. Executable models of security policies: our concern was to identify formal
models for security policies, to capture behaviours that could be exercised
with active tests.

2. Methodology for testing policy enforcement: the goal was to define and
formalize the concepts of testing and the associated methodology to re-
late requirements, policies, actual systems etc; in the case of protocol
conformance testing, the Z.500 standard provides a formalization of the
methodology defined in IS 9646. But the test of security is not well defined
or establish, and we need a clarification of concepts.

3. Test selection/generation: we have some experience with test generation
from formal models. However, in the case of security policies, testing
cannot be based on the same principles. First because security is part of
non-functional requirements, and a functional model would generally not
be available and it would have to span various astraction levels. Second,
the selection of test data in the absence of model may be crucial to uncover
violations of security.

4. Conformance of external code to a given policy: in the case of open net-
worked systems, not only the system must abide by a given policy, but it is
crucial to check whether code incorporated by dynamic loading conforms
to the policy.

Our preliminary investigations have led us to reorganize the projects along
three main directions. Actually, we have looked into several models, but there is
no clearly identified executable model that could serve as a reference. Contrary
to e.g. reactive systems, where the scientific community was able to establish
long ago typical benchmarks and theoretically sound bases for models, there is
no such consensus for network policies. Since testing is a new concern, testable
models have not been identified in the state of the art. This also affects the
theorization of testing in that context. On the other hand, links with other
techniques have been identified, and we have reorganized our investigations in
the following directions.

• Non-interference. Three groups in the project address the use of testing
techniques to assess non-interference on three complementary goals: con-
fidentiality, secrecy and a more qualitative approach with the analysis of
covert channels.

• Diagnosis. Whereas protocol testing is usually done through active tests,
it turns out that passive testing techniques may be better related to the
control of security requirements, through monitors or access controllers
for instance.

• Generation of attacks. IRISA and the Grenoble labs have investigated
complementary approaches on this issue: based on combination of prop-
erties with symbolic models in Rennes, based on direct generation from
security rules in Grenoble.

In the following sections, we present those three main directions. Although
this project has already given birth to a number of scientific publications, we are
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still in an early phase, where we investigate different approaches. We started
from a background in functional (dependability) validation, and we are integrat-
ing the specificities of addressing security requirements. Although we did not
expect to develop tools within the project, we are now contemplating small scale
experimentations to see whether the techniques can actually be used to detect
violations. It is as yet premature to compare to other approaches in security
(e.g. Intrusion Detection Systems and associated models).

Apart from publications, the POTESTAT project has also given birth to
a collaborative project with industrial (and other academic) partners: PO-
LITESS, started in march 2006, has been accepted as a RNRT project. It
incorporates elements that come from our first findings about models, the use
of passive testing, test generation for policies etc. Another project, POSE,
started in January 2006, has been accepted by RNTL. It involves only one part-
ner of POTESTAT, but it also entails modelling of security policies and test
generation for them, in the context of smartcard applications.

2 Non-interference

In this section, we report on three different research directions on non-interference.
The general problem of non-interference consists in determining whether an at-
tacker is able or not to discover some secret behavior of the system from its
observations. In the first direction followed by the Lande team, one consid-
ers non-interference of one execution of a deterministic program. The second
direction of work followed by the Vertecs team is concerned with a weak no-
tion of non-interference of systems parametrized with a safety property (the
secret). The third direction followed by the Distribcom team is concerned with
the analysis of covert-channels.

2.1 Strict non-interference (confidentiality)

In this work, we have been looking at the respect of the strict non-interference
property by programs. This property has been introduced by Cohen [19] and
Goguen and Meseguer [21]. A program respecting the non-interference property
is ensured to respect the confidentiality of its secret data. Basically, this prop-
erty states that a variation in the inputs containing secret data has no effects
on the public outputs of the program. Sabelfeld and Myers ([25]) state this
property as follows:

∀σ1, σ2 ∈ S, σ1 =L σ2 ⇒ [[C]]σ1 ≈L [[C]]σ2.

In this statement, C is a command (or program) respecting the non-interference
property. The set S contains all the program states. The relation =L takes two
program states as parameters; it is true whenever the two states differ only in
their secret data. [[C]]σ is the “behavior” of the execution of the command C
with the initial state σ. The relation ≈L is true whenever the two “behaviors”
given in parameters do not differ at the level of their public outputs.

As in the rest of the project, we have been looking at the behavior of execu-
tions and not of the whole program. The standard approach for non-interference
(i.e. static analyzes) is then not what interested us. We have been looking at
what it means for an execution to be non-interfering and how to check or ensure
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it. Two approaches have been followed: either monitoring executions in order
to ensure that it is non-interfering, or test executions of programs to gain some
confidence that the program respects the confidentiality of its secret data. Some
of this work have been published in [12].

Monitoring. Following some works by Schneider [26], Terauchi and Aiken
[27], and Ligatti, Bauer and Walker [23], we developed an automaton tracking
variables containing secret data during an execution. A semantics including
this automaton has been formalized. Before executing any action, an input
is sent to the automaton which checks the validity of this action, and either
validates the execution of that action, or sends an other action to be executed
instead of the one which should have. As non-interference is not a property of
the sequence of actions of an execution, the automaton checks the commands
contained in branches which are not executed. The correctness of the method
has been proved.

Testing. The other approach considered involved the development of an ex-
tended semantics dealing with tagged data. Those tags evolve during the ex-
ecution and keep track of the security level of the corresponding data. Based
on the tags obtained at the end of the execution, it is possible to check if the
corresponding execution respected the confidentiality of its secret data. As with
monitoring, an analysis is used to get some inputs about the behavior of non-
executed commands. The information acquired by this method is more precise
than the one the monitoring method gives back. However, it can not be used
for monitoring because of the creation of a new covert channel using the tags
themselves. This method is then more appropriate for testing.

2.2 Weak non-interference (secrecy)

It is well known that the notion of non-interference introduced by Goguen and
Meseguer [21] is often too restrictive for its application in real situations. In
fact one would like to relax the non-interference property depending on what
an external observer is authorized to learn about the internal behavior of the
system.

In this work [5] we consider a system modelled as a symbolic transition
system (STS) S = (V,Θ,Σ, T ) where V is a vector of variables, including loca-
tions, Θ is the initial location defined as a boolean expression on variables in
V with a unique solution, Σ = Σo ∪Σuo is the alphabet of actions partitionned
into observable actions in Σo, and internal unobservable actions in Σuo. These
actions may carry communication parameters sig(a) in P , T is a set of tran-
sitions of the form (a,G, A) where a is an action, G is a boolean expression
on V and sig(a) called the guard, and A is the assignment of variables in V
to expressions on V ∪ sig(a). The semantics of S is a labelled transition sys-
tem (LTS) S = (Q,Q0,Λ,→) where Q = Dom(V ) is the set of states, Q0 is
the unique solution of Θ, Λ = Λo ∪ Λuo is the set of valued actions (actions
with values of parameters), partitionned according to the partition of Σ, and
→ is the transition relation. One can view the system as a set of executions in
Runs(S) ⊆ Q0.(Λ.Q)∗, a language (set of sequences) L(S) = projΛ(Runs(S))
or a set of traces Traces(S) = projΛo(Runs(S)).
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In the following, we assume that a secret is specified by a safety property
of runs (more general situations have not been investigated yet). This can be
expressed by a deterministic STS Ω = (V ∪VΩ,ΘΩ,Σ, TΩ) which non-intrusively
observes the evolution of the variables of the system S. Ω is equipped with a
stable boolean variable Accept (once true, Accept remains true), confering it the
status of recogniser of runs (RunsAccept(Ω) = {s ∈ Runs(Ω) | ΘΩ

s→ q ∧ q |=
Accept = true}. By the stability of Accept, the set of runs RunsAccept(Ω) is
extension-closed i.e. RunsAccept(Ω).(Λ.QΩ)∗ ⊆ RunsAccept(Ω), meaning that Ω
specifies the violation of a safety property.

Now non-interference of S with respect to secret Ω is defined as follows :

NI(S,Ω) = ∀s ∈ Runs(S), proj−1(s) ∈ RunsAccept(Ω),
∃t ∈ Runs(S), projΣo(s) = projΣo(t) ∧ proj−1(t) /∈ RunsAccept(Ω)

Intuitively, this means that every run s of S which is accepted by Ω (the run
exhibits the secret) is masked by another run with same trace, which does not
exhibit the secret. This generalizes the definition of opacity given by [18, 15].

An attacker of the system is then a diagnoser (see section 3) whose aim
is to diagnose membership of observed executions in RunsAccept(Ω). Such a
diagnoser is obtained as Det(S×Ω) (determinisation of the synchronous product
between S and Ω) equipped with a function Diag on sets of states such that for
R ⊆ 2Q×QΩ , Diag(R) = true if and only if ∀q ∈ R, q |= Accept = true. Now,
the system is non-interferent if no such set of states is reachable in Det(S ×Ω),
meaning that the diagnoser will never succeed in determining that the secret
has been exhibited by all runs that could produce the observation.

Constructing the diagnoser and verifying non-interference is relatively easy
when S is finite state. However, it is much more difficult for infinite state sys-
tems. First Det(S × Ω) cannot always be constructed, but is possible with
sufficient conditions on S × Ω [11]. Second, verifying non-interference relies on
reachability and is in general undecidable. However, if non-interference can be
proved on an over-approximation of Det(S × Ω) (e.g. using abstract interpre-
tation), it is preserved on Det(S × Ω).

In the case where non-interference is false (or not proved), one should test
if this attack corresponds to a real attack in the real system (see section 4).

2.3 Covert-channel, Distribcom

Covert channels are illegal information flows of information that are used se-
cretely to transfer information. The main drawback of a covert channel is that
it can be used to violate a security policy. Another drawback is that the covert
mechanisms used to transfer information often use large amounts of systems
resources, and hence impose a performance penalty to other users.

Covert channel identification has first been proposed for the classical Bell &
La Padulla Model [17, 16]. The main idea was to detect potential flow in the
transitive closure of an access matrix as in [22].

Covert channels have also been characterized in other models such as process
algebra [24]. The current trend is to characterize covert channels as an interfer-
ence property. The following interference formula defines non interference for a
pair of users u, v that use a system S

u||S||v ≈ S||v
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This formula means that user v can not observe what u does (or even if u
uses the system) through its use and observation of S. However, as stated in
[24], an interference only characterizes the fact that two actors in the system
may exchange at least one bit of information at one moment in time, but nothing
more.

Another problem with the non-interference framework is that a covert chan-
nel is characterized when two actors u and v that are not allowed to communicate
in the system’s security policy violate the non-interference property. However,
some covert channels are “legitimate”, ie some hidden information can be passed
from an actor to another over a legal flow of information.

Our work focuses on a notion of “iterated interference” to characterize the
presence of a covert channel in a system, and on the extension to legitimate
channels. A first framework based on games and scenarios has been proposed in
[7, 6, 8], and a new characterization in alternating µ-calculus has been proposed
by [4].

In this work, we start from a labeled transition system symbolizing the
execution of a distributed system, and we chose a pair of users p1, p2. In this
LTS, we identify some interfering places, i.e. states from which p1 may signal
bit 0 or bit 1 to p2 (roughly speaking, there are at least two runs r1, r2 starting
at interfering places such that the projection of r1 and r2 on actions observed by
p2 are different). Being an interfering place can be defined with an alternating
µ-calculus formula. Then the presence of a covert channel from p1 to p2 is
characterized as the ability to pass infinitely often through interfering places.
This can also be expressed as an alternating µ-calculus formula. We have shown
that the satisfiability of such a formula is decidable, and implies the existence
of a distributed strategy to pass infinitely often through interfering places.

3 Diagnosis of security policies specified by safety
properties

The general problem is to detect, based on the observation whether or not a
security policy, corresponding to a particular set of sequences, is violated in the
system. In this section, we outline two different research directions on diagnosis
of security policies. In the first one, the idea was to show how the diagnosis
techniques traditionally used to supervise control-command systems, can be
adapted to monitor a system on-line with respect to some securities policies
corresponding to safety properties.

3.1 The diagnosability of discrete event-systems applied
to security policies violation detection

The general diagnosis problem is to detect or identify patterns of particular
(sequence of) events, corresponding to policy requirements, on a partially ob-
servable system. The aim of diagnosis is to decide, by means of a diagnoser,
whether or not such a security policy pattern occurred in the system. Even if
such a decision cannot be taken immediately after the occurrence of the pat-
tern, one requires that this decision has to be taken in a bounded delay. This
property is usually called diagnosability. This property can be checked a priori
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from the system model, and depends on its observability and on the kind of
patterns which are looked for.

We assume that the system is modeled as a symbolic transition system (STS)
S = (V,Θ,Σ, T ). We refer to Section 2.2 for the mathematical definition as
well as the notations used here after. We formally introduce the notion of
pattern as a means to define the security policies. A security policy pattern is
specified by a safety property of sequences expressed by a deterministic STS
Ω = (VΩ,ΘΩ,Σ, TΩ) which observes the evolution of the system S. Ω is equipped
with a stable boolean variable V iolate and we denote by LΩ(V iolate) the set
of sequences that violate the corresponding security policy. Note that these
patterns are more expressive that the ones that are considered in [26] as they
allow to specify properties on sequences (or even runs) and not only on traces.

Now, the Diagnosis Problem is expressed as the problem of synthesizing a
function over traces, the diagnoser, which decrees on the possible/certain occur-
rence of the pattern on trajectories compatible with the trace. The diagnoser
is required to fulfill two fundamental properties: correctness and bounded di-
agnosability. Correctness expresses that the diagnoser answers accurately and
Bounded Diagnosability guarantees that only a bounded number of observations
is needed to eventually answer with certainty that the pattern has occurred.
Bounded Diagnosability is formally defined as the Ω-diagnosability of the sys-
tem (where Ω is the security policy pattern). Formally, the Diagnosis problem
can be stated as follows: given an STS G and given a security policy pattern
Ω, decide whether there exists (and compute if any) a three valued function
Diag : Traces(S) → {Y es, No, ?} decreeing, for each observable trace µ of
S, on the membership in LΩ(V iolate) of any trajectory compatible with µ.
Formally,

• (Diagnosis Correctness) The function should verify

Diag(µ) =

 Y es if proj−1(µ) ∩ L(S) ⊆ LΩ(V iolate)
No if proj−1(µ) ∩ L(S) ∩ LΩ(V iolate) = ∅
? otherwise.

• (Bounded Diagnosability) As S is only partially observed, we expect in
general situations where Diag(µ) =?. However, we require this undeter-
mined situation not to last in the following sense: There must exist n ∈ N ,
the bound, such that whenever s ∈ proj−1(µ) ∩ L(S) ∩ LΩ(V iolate), for
all t ∈ L(S)/s ∩ Σ∗.Σo, if ‖proj(t)‖ ≥ n then Diag(proj(s.t)) = Y es.

Such a diagnoser is obtained as Det(S × Ω) equipped with a function Diag
on sets of states such that for R ⊆ 2Q×QΩ , Diag(R) = Y es (resp. No) if
and only if ∀x ∈ R, x ∈ Q × V iolate (resp. /∈ Q × V iolate and ? otherwise).
Verifying the Bounded Diagnosability is performed on ε(S×Ω)×ε(S×Ω) where
ε corresponds to the epsilon closure of the STS S × Ω. The idea is to test the
presence of some undetermined states cycles in this STS. If any, then the system
is not diagnosable with respect to the security policy pattern.

As for the non-interference problem, tackled in the previous section, con-
structing the diagnoser and verifying the bounded Diagnosability property is
easy when S is finite state [9, 10]. For general infinite state systems, as the de-
terminization is necessary to construct the diagnoser, the product S ×Ω should
fulfill some conditions [11]. Now, if the bounded Diagnosability property is
proved on an over-approximation then it is preserved on the system.
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Finally, one can adapt the results presented in Section 2.1 (paragraph Mon-
itoring) in order to stop the execution of the system whenever the violation of
the safety properties has been discovered by the diagnoser. In a strict security
point of view, one can imagine to use this for intrusion detection. The policy
describes behaviors one wants to prevent and the diagnoser plays the role of an
intrusion detection system (IDS). The first advantage of the approach is that,
when the system is diagnosable, the IDS can work on-line with logs restricted to
observable actions, thus preventing the explosion in the size of logs. Moreover,
the diagnosability bound n can serve to forget old events past the n + 1 last
ones.

3.2 Refinement

A classical problem in network security is that security requirements are ex-
pressed either in a very abstract, either in a very concrete way.

For examples security policy defined by the management of an organization
express what individuals or rôles are allowed to do, when, where, etc and can
describe complex behaviours.

This allows to abstract from technical constraints caused by configuration,
hardware, software, and to express security in rather broad terms of assets,
individuals, data, confidentiality. But it makes it difficult to apply these re-
quirements to a real system.

At the other end of the spectrum, security policies for administrators are
state-of-the-art guidelines, classical configuration files for servers or architectural
considerations. Easy to apply, but it is difficult to establish a link between the
abstract and the concrete level. The mapping is up to the administrator to be
done.

There is no sure way to know if the mapping is correct. There is a consensus
in the security world that it is, the only problem remaining being to maintain
your software and firmware up to date (antivirus, ...). In practice, errors and
misconfigurations are very frequent, and administrators wait for users to signal
problems to them.

A goal of Potestat is to resolve this problem by testing the conformance of a
network to an abstract security policy. To attain this goal we refine an abstract
policy into concrete data that could be used at a more concrete level shall be
provided.

We already publish some work [3] in this area. [3] proposes a method to verify
the conformance of a network to an abstract security policy by monitoring data
flows.

The security policy is a collection of authorizations and prohibitions ex-
pressed over individuals, roles in the organization, and resources. Resource can
be some data items, or a service provided by the network. Examples of rules
are that John is authorized to send mail (in this case the resource is the process
in the network used to send electronic mails, or John can access the Intranet of
the organization.

We use the B method [14] to develop the monitor. This method allow to
build a software by consecutive refinements of data and process. Each of the
refinement is proved.

We decide that each of our B refinement will be used to refine both de-
scription of the environment (the network) and the refinement of the abstract
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security policy. The levels of description are approximately the same that those
of the TCP/IP model.

A set Eventi represents all possible events at the ith description level.
Event0 is the level of the abstract security policy (not defined in the TCP/IP
model). A relation, mappingi, allow to link events from the concrete level i to
the corresponding events at the abstract level, at which the security policy is
defined.

A major problem is the limited observability of data flows in a network.
Due to performance issues all informations about low-level events cannot be
collected. For example it is not unusual that from a IP packet, it is not possible
to obtain information about the applicative layer.

This makes impossible, in some cases, to determine exactly the link between
the observed concrete event and an abstract event described in the security
policy. An over- approximation shall be used. This causes conflicts, as for
some concrete events the monitor can make a link with a set of abstract events,
some of them being authorized and others prohibited. For this reason we create
new values to indicate if there is a doubt or if something happened we do not
understand. The monitor logs all these alerts.

Even when a direct link can be established between high and low level,
subsists the problem of the trust in the link, very frequent in security. For
example, such a link is one that indicates if one computer can be used by one
individual (it can be its workstation). What happened if another individual
use the computer? If this can happen the link between the levels is not sure.
More or less trust can be placed in the link, depending on the security measures
associated with the link (authentication, ...) and the security degree wished for
the monitor.

We are currently working on the merging of these results on refinement of
security data with other works in Potestat about active conformance security
testing of networks.

4 Generation of attacks from security policies

4.1 Test Generation for Network Security Rules

Our main goal is to define a methodoly for testing policy enforcement. Some sort
of testing is actually performed by system administrators to check for known
vulnerabilities : portscans and password crackers fall into that category. How-
ever, such tests are usually limited to just a single security mechanism. With
existing techniques, it is difficult to address the issue of consistency of con-
figurations on distributed devices. Our approach is to consider that testing a
given network configuration for compliance with a stated policy is a kind of
conformance testing. Therefore, we aim at deriving tests from a formal and
global specification of the security policy to check whether the implementation
is correct.

4.1.1 Approach for test generation

There are a number of significant differences with the framework of protocol
conformance testing. Protocol conformance testing is done on a well defined
protocol level (normally one at a time), with a given interface and associated
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PDU definitions. We do not assume any formal model of the network and the
policy is not described by a comprehensive model such as a global LTS or state
machine, but by a collection of rules. The policy is described at a much higher
level than the actual events that can be observed or controlled in the network.
Security policies are often implemented with a mixture of mechanisms at various
levels of communication and O/S inter- faces. Moreover, security rules use
deontic modalities, such as authorization, denial and obligation. Testing such
modalities is not straightforward and the use of deontic logic raises a number
of paradoxes.

We propose a method to derive tests from a policy expressed as a set of rules.
We consider this as a first step to define a global methodology for automatic
derivation of tests suites as well as the execution of these tests suites. In order
to identify typical requirements and the corresponding tests, we start from a
case study, which is to identify the security policies used in the IMAG network,
which connects our laboratories. Most of the rules in the case study (which
actually covers much more than e-mail) express some constraints about the
possible behaviour of the system. More specifically, they are of the form “Mod
P”, where Mod is a modality among obligation, permission or interdiction, and
P is either a predicate on the system or a behaviour. We need to establish a
correspondence between the basic predicates appearing in a rule and sequences
of events that can represent a test or instanciations of such predicates. There are
different types of predicates. Some may have to be tested dynamically through
interaction with the system. Others might be checked without PDU exchanges,
for instance if we have access to the configuration files of the system when the
test is set up.

For the moment, we do not address all issues. We identify a language with
a restricted form of rules that cover most of the rules that can be found in texts
describing security policies, keeping in mind that we are focusing on rules that
are translated into actual configurations and behaviours or network security
devices. This restricted set of rules allows us to design a “tile-based” generation
method. For each element of our language and each type of rule, we propose a
pattern of test, which we call a tile. The simple form of rules makes it possible to
compose a global test by simply combining the tiles associated to the elements.
We have proposed [2, 1] a formal description of the rules: each rule is expressed
by a logical formula, built upon literals. With each literal is associated a tile.
Based on an operational semantics of our logic, we have defined a test generation
function, which combine the tiles.

4.1.2 Perspectives

In our tile-based approach, complete test cases (dedicated to a whole formula)
are obtained by combinations of more elementary ones (the tiles), following a
syntax driven approach (a test combinator is associated to each logical operator
of the formula). Elementary test cases, allowing to test basic events or pred-
icates appearing in the security policy, have to be provided by the user. Our
test generation method is based on the fact that security policies are most of
the time expressed by rules which can be captured by a restricted logic as the
one we used. Therefore it should be extended into several directions. First of
all, the test cases produced are still very abstract. Turning them into executable
test cases needs to take into consideration a concrete test architecture. As-
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suming that each elementary test case complies with this architecture, it would
remain to ensure that it is also the case for the complete test case (or alterna-
tively to take this architecture into account during the combination process).
Moreover, these abstract test cases also need to be instantiated with concrete
data (e.g. by selecting particular machines of the network). Suitable selection
strategies should therefore be investigated (for instance a test could focus on
the more recent changes in a network configuration, as in regression testing).
Furthermore, the proposed generation technique itself could be improved. the
test architecture).

Another improvement could be to extend the formalism we considered to
specify the security rules. This initial choice was motivated by our case study,
and it was sufficient to demonstrate the effectiveness of the approach. However,
it is clear that this formalism may be not sufficient to deal with arbitrary security
rules, and that more specific operator/modalities need to be considered. One
can think for instance of a triggered obligation bounded by an event (and not
by an arbitrary timeout), or of some of the general operators proposed in the
Nomad logic [20]. Further work remains to be done in order to check which of
these operators could be supported by our tile-based approach.

Finally, we also intend to evaluate this work on other case studies, and to
prototype it on a real network.

4.2 Generation of attacks with test generation techniques

In this work, we investigate the use of test generation techniques for the gener-
ation of attacks from security policies and network models.

We assume the existence of a model of the network. It is unrealisitc to
assume that the model will completely describe the network behaviour, but one
can imagine to model an abstraction of this behaviour or an abstraction of some
elements of the network. We consider that the model of the network is given by
a symbolic transition system N (STS, see 2.2) that allows to mix control and
data aspects.

Even if this is not the most general form of security policy, we assume that a
security policy is given in terms of a safety property (or a conjunction of safety
properties). This can be easily modelled by an STS Ω equipped with a stable
set of “bad” locations (or equivalently with a boolean variable bad). This STS
accepts runs (or sequences of behaviours) that violate the safety property. This
allows to generalize automata à la Schneider [26].

The principle of attack generation is then to identify behaviours of the net-
work model that violate the security policy. This can be done by analysis of
the reachability of “bad” states in the STS N ×Ω which precisely identify exe-
cutions of N violating the security property. The generation of attacks is then
very similar to test generation for safety properties [13].

There are still some problems to solve. First reachability in N × Ω is not
decidable. However, one can resort to over-approximations (using e.g. ab-
stract interpretation techniques). If “bad” states are unreachable in the over-
approximation, this remains true in N × Ω, thus in the real system (with the
assumption that N is an over-approximation). If some “bad” states are reach-
able in the over-approximation, one can try to check if these are real or spurious
counter-examples in N × Ω. This can be done by refinement of the approxi-
mation in order to eliminate these counter-examples. If this fails (either there
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exists real counter-examples or the refinement did not allow to eliminate all
counter-examples), as again we assumed that N is an over-approxmation of the
real system, this does not prove that this correponds to a real attack of the
network. One should then test these counter-examples on the real system in
order to see if these correspond to real attacks or not.

5 Facts and Data on the project

5.1 Plenary Meetings held

Plenary meetings with all the partners have been held every 3 months alterna-
tively in Grenoble and Rennes. Each plenary meeting is held on two days, with
an overnight stay.

• Grenoble 15-16/9/2004

• Rennes 20-21/12/2004

• Grenoble 21-22/03/2005

• Rennes 16-17/06/2005

• Rennes 20-21/12/2005

• Grenoble 6-7/04/2006

Apart from those plenary meetings, many local working meetings have been
held in Grenoble between LSR and Vérimag, and in Rennes between Distribcom,
Lande and Vertecs. POTESTAT also participated (and presented) in the two
annual gatherings of the ACI programme on Security: in Toulouse in 2004 and
in Bordeaux (PariSTIC) in 2005.

5.2 Contributing students

We list here only students, and neither PhD nor Post-doc that have already
been mentioned on the first page. In the first year of the project (2004-2005):

• Sébastien Boutonnet (INPG Telecom)

• Aldric Degorre (ENS Ker Lann)

In the second year (2005-2006):

• Mohammed Abdelmoula (M2R Grenoble)

• Ylies Falcone (M2R Grenoble)

• Jérémy Dubreil (internship ENST Bretagne, then INRIA supported PhD
from 1/3/2006)

5.3 Publications

[1] V. Darmaillacq, J-C. Fernandez, R. Groz, L. Mounier, and J-L. Richier.
Éléments de modélisation pour le test de politiques de sécurité. In Colloque
sur les RIsques et la Sécurité d’Internet et des Systèmes, CRiSIS, Bourges,
France, 2005.
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[2] V. Darmaillacq, J-C. Fernandez, R. Groz, L. Mounier, and J-L. Richier.
Test Generation for Network Security Rules. In 18th IFIP International
Conference, TestCom 2006, New York, May 2006. LNCS 3964, Springer.

[3] V. Darmaillacq and N. Stouls. Développement formel d’un moniteur
détectant les violations de politiques de sécurité de réseaux. In AFADL2006
- Approches Formelles dans l’Assistance au Développement de Logiciels,
Paris, March 2006.

[4] A. Degorre. Caractérisation de canaux cachés en logique temporelle alter-
nante. Master’s thesis, ENS Cachan, antenne de Bretagne, 2005.

[5] J. Dubreil. Non-interference on symbolic transition systems. Master’s
Thesis, Uppsala University, Enst Brest and Irisa, 2006.

[6] L. Hélouët. Finding covert channels in protocols with message sequence
charts: the case of rmtp2. In Proc. of SAM’2004, 4th conference on SDL
and MSC, June 2004.

[7] L. Hélouët, C. Jard, and M. Zeitoun. Covert channels detection in pro-
tocols using scenarios. In Proceedings of SPV’2003, Workshop on Secu-
rity Protocols Verification, 2003. Satellite of CONCUR’03. Available at
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[8] L. Hélouët, M. Zeitoun, and A. Degorre. Scenarios and covert channels,
another game... In Proc. Games in Design and Verification, GDV ’04,
Satellite of Computer Aided Verification, CAV’04, volume 119 of Electronic
Notes in Theoretical Computer Science, pages 93–116. Elsevier, 2004.

[9] T. Jéron, H. Marchand, and M-O. Cordier. Motifs de surveillance pour le
diagnostics de systèmes à événements discrets finis. In 15e congrès franco-
phone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle,
Tours, France, January 2006.

[10] T. Jéron, H. Marchand, S. Pinchinat, and M-O. Cordier. Supervision pat-
terns in discrete event systems diagnosis. In Workshop on Discrete Event
Systems, WODES’06, Ann-Arbor (MI, USA), July 2006. Also Published
in DX’06 and Irisa research report No 1784.

[11] T. Jéron, H. Marchand, and V. Rusu. Symbolic determinisation of ex-
tended automata. In 4th IFIP International Conference on Theoreti-
cal Computer Science, IFIP book series, Stantiago, Chile, August 2006.
Springer Science and Business Media. Also Irisa research report No 1776.

[12] Gurvan Le Guernic and Thomas Jensen. Monitoring information flow. In
Andrei Sabelfeld, editor, Proceedings of the 2005 Workshop on Foundations
of Computer Security. DePaul University, June 2005. LICS’05 Affiliated
Workshop.

[13] Vlad Rusu, Hervé Marchand, and Thierry Jéron. Automatic verification
and conformance testing for validating safety properties of reactive systems.
In John Fitzgerald, Andrzej Tarlecki, and Ian Hayes, editors, Formal Meth-
ods 2005 (FM05), LNCS. Springer, July 2005.
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