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Abstract

One of the goals of the integration of formal and graphi-
cal methods is to reuse tool support associated with formal
methods. This paper reports on a combination of the Jaza
Z animator with the RoZ tool. RoZ produces a Z specifica-
tion from an annotated UML class diagram. It also gener-
ates the specification of basic operations associated to the
diagram. The paper recalls the principles of the RoZ tool,
gives a typical animation session, and discusses how RoZ
and class diagrams must be adapted to support animation.

1. Introduction

In the last decade, numerous efforts have tried to in-
tegrate formal methods with graphical notations, such as
UML[1]. The goal is to combine popular and intuitive no-
tations with the precision of formal languages. A recent
study [12] compares the use of the B method and the use
of UML class and state-transition diagrams [1] on the same
project. It concludes that B leads to a better precision than
UML while UML produces more intuitive and readable
documents. The authors advocate for a combination of both
methods. Actually, a combination of both methods should
bring more precise semantics to graphical formalisms, and
favour a wider use of formal method tools. In the area of
model-based languages such as Z, B or VDM, attempts have
been made to link UML with VDM++ [8], B [13, 7, 9], Z
[4, 3] or Object-Z [2, 6]. These works have shown that for-
mal methods could make the semantics of graphical lan-
guages more precise, but using formal method tools to ex-
ploit the resulting formal model remains a difficult task.

The RoZ tool [3] results from one of these integra-
tion efforts. It is based on a set of rules which translate
a UML class diagram, annotated with Z assertions, into a
full Z specification. The tool also automatically generates
the specification of basic operations associated to a data
model. In [10], the Z-Eves tool[11] was used in conjunction
with RoZ to establish some consistency properties and help

identify operation preconditions. Still, while provers help us
construct consistent specifications, they don’t solve the val-
idation problem: did we write the right specification? Ani-
mators can help us. They provide a way to experiment with
the specification, and to compare its behaviour with the ex-
pected one. This paper reports on our attempt to combine
RoZ with the Jaza Z animator 1.

This paper shows how Jaza can be used with RoZ, but
also how RoZ had to be adapted to produce suitable in-
put for Jaza. Additional rules were added to RoZ to make
its specifications more executable. Using an animator also
helped to clarify several issues related to the promotion of
operations, and of their scope. Sect. 2 presents RoZ, on the
basis of a small example. Sect. 3 then shows how the exam-
ple can be animated using Jaza. Sect. 4 discusses how RoZ
has evolved to adapt to Jaza, and how class diagrams must
be adapted to fit the RoZ/Jaza needs. Finally, Sect. 5 dis-
cusses the current limitations of the tool, and draws the con-
clusions and perspectives of this work.

2. Roz

RoZ is a set of scripts for the Rational RoseTM environ-
ment2. They translate the structure of UML class diagrams
into Z specification skeletons, and fill the Z specification
with several annotations of the class diagram. RoZ also sup-
ports the generation of basic operations and of several proof
obligations (not covered here but discussed in [10]).

2.1. The access control example

Fig. 1 shows the class diagram of the access control ex-
ample. In this diagram, PERSON models the set of peo-
ple who might access a set of buildings ( represented by
class BUILDING). Each person has a first and lastname, and
is identified uniquely by a number (cardnb) which corre-
sponds to the smart card used to access the buildings. This

1 http://www.cs.waikato.ac.nz/˜marku/jaza/
2 http://www.rational.com



Figure 1. The class diagram of the access control example

card has a validity period characterized by start and end
dates. Each person is also associated to a non-empty set
of phone numbers. BUILDING is another class in this di-
agram, each building being characterized by some identifier
(buildingcode) and its address.

Several constraints are associated to that class. In UML,
these may be expressed in natural language, as illustrated on
Fig. 1 where a constraint is stated on the start and end dates
of a person. OCL provides another way to state these con-
straints. In RoZ, we choose to express these constraints in
Z (see Sect. 2.3).

Each access of a person to a building is stored in an in-
stance of ACCESS. An access corresponds to one and only
one person, one and only one building, and the instant when
the access begins (startdate). When the person exits the
building, the end time of the access is recorded (enddate).
Access of a person to a building is granted on the basis of
the membership of this person to a group which may access
the building. Class GROUP represents these groups, and as-
sociations Members and MayAccess record the members of
a group, and the set of buildings a group may access.

2.2. Translation into Z

Types Fig. 1 is a classical class diagram, except that at-
tribute tel of PERSON is declared of type \finset TEL.
In RoZ, each attribute type must correspond to a Z set.
These are declared in a separate file. Here are the set decla-
rations for the access control example.

[NAME, GROUPCODE, GROUPNAME]
[BUILDINGCODE, ADDRESS]
DATE == N
TEL == 0 . . 9999999999
DIGIT8 == 0 . . 99999999

tel being a multivaluated attribute, it is declared as an el-
ement of set F TEL. Please note that in order to benefit from
comparison operators, dates are natural numbers.

Some attributes may remain undefined for some time,
e.g. enddate is undefined during the access. Therefore, we
introduce a constant, named undefineddate which is one
particular date that will be used to denote the undefined
value. The axiomatic definition does not prescribe which
value should be chosen; typically, it will be some very large
value. This choice is left for later stages in the development.

undefineddate : DATE

Z skeleton Each class can then be translated into a pair of
Z schemas. The first one, e.g. PERSON, is a schema type
which corresponds to the structure of instances of the class.
The second one, e.g. PersonExt declares the set of all in-
stances of the class that are stored in the information sys-
tem. The first schema corresponds to all possible instances;
it is called the “intension” of the class. The second schema
corresponds to the current instances of the class; it is called
the “extension” of the class.

PERSON can be completed with constraints on the at-
tributes of a given instance. PersonExt may feature more
global constraints involving several instances. These will be
discussed in Sect. 2.3.

PERSON
cardnb : DIGIT8
lastname : NAME
firstname : NAME
startdate : DATE
enddate : DATE
tel : F TEL
. . .

PersonExt
Person : F PERSON
. . .



Similarly, class GROUP is translated into:

GROUP
groupcode : GROUPCODE
groupname : GROUPNAME
. . .

GroupExt
Group : F GROUP
. . .

The associations which link the classes, e.g. Members,
are also translated into Z specifications.

MembersRel
PersonExt; GroupExt
PersonOfGroup : GROUP 7→ F PERSON
GroupOfPerson : PERSON 7→ GROUP
dom GroupOfPerson ⊆ Person
ran GroupOfPerson ⊆ Group
PersonOfGroup = {g : ran GroupOfPerson •

g 7→ {p : dom GroupOfPerson |
GroupOfPerson(p) = g • p}}

. . .

In this schema, Members is translated as a pair of func-
tions which correspond to both roles of the association.
Function PersonOfGroup maps a group to a set of per-
sons, because the role is multivaluated (0..n), while the
monovaluated GroupOfPerson links a person to a single
group. Three constraints are added to the diagram. The
first two constraints express that the domain and range of
GroupOfPerson are subsets of the extensions of classes
PERSON and GROUP. In other words, you may not record
a link between two instances that are not stored in the in-
formation system. Since these constraints refer to the exten-
sions of the classes, schemas PersonExt and GroupExt are
included in MembersRel.

The last constraint is a rather complex set comprehen-
sion expression, aimed at constructing PersonOfGroup from
GroupOfPerson. It expresses that function PersonOfGroup
links each group g, which appears in the range of
GroupOfPerson to the set of persons who map to that group
through function GroupOfPerson. Schema MembersRel
also leaves space to express some constraints on the func-
tions of the association.

The remaining classes and associations of the diagram
are translated similarly, and finally grouped into a global
schema which includes all associations, and transitively, all
extensions of classes. Once again, this schema leaves space
for adding constraints on the whole data structure.

GlobalView
MayAccessRel
AccessesOfBuildingRel
MembersRel
AccessesOfPersonRel
. . .

Figure 2. RoZ constraint for cardnb

2.3. Constraints

The graphical formalism has a limited expressiveness.
Complex data structures usually include invariant con-
straints. In UML, such constraints can be expressed in OCL
[15]. As shown in Fig. 2, RoZ allows to express these con-
straints directly in the Rational Rose environment, as Z an-
notations in the various “documentation” fields of the class
diagram. In the access control example, we want to ex-
press the following constraints.

1. The last two digits of cardnb are a checksum.

2. When enddate is defined, it is always greater than
startdate (for both classes PERSON and ACCESS).

3. The keys of classes are: cardnb for PERSON,
groupcode or groupname for GROUP, buildingcode
for BUILDING, and the combination of person,
building and startdate for ACCESS.

4. Members of the same group have the same telephone
prefix.

5. Finally, if a person performs an access to a building,
then the person must be member of a group which may
access the building.

Moreover, we want to express that the arity of attribute tel
is 1..n, and that startdate is always defined. Such arity con-
straints can be expressed in the graphical formalism, but
they are only partially translated into the Z skeletons.

An interesting feature of RoZ is that it allows to express
constraints at several levels, depending on their scope. For
example, constraints 1 and 2 can be evaluated for a given in-
stance of a class, they will be expressed in the Z schema cor-
responding to the intension of the class. In RoZ, such con-



Figure 3. RoZ constraint for Person

straints are expressed in the documentation field of one of
the attributes involved. For example Fig. 2 shows how con-
straint 1 (checksum of cardnb) is expressed in the documen-
tation field of attribute cardnb. The constraint expresses that
the last two digits of a card number are the six leading dig-
its modulo 97.

RoZ automatically fills these annotations into the Z
skeleton. Here is the resulting schema for PERSON:

PERSON
cardnb : DIGIT8
lastname : NAME
firstname : NAME
startdate : DATE
enddate : DATE
tel : F TEL
(cardnb div 100) mod 97 = cardnb mod 100
tel 6= {}
startdate 6= undefineddate
(enddate 6= undefineddate) ⇒ (startdate ≤ enddate)

The schema includes constraint 1. It also expresses the
arity constraints on attributes tel and startdate: tel is never
empty and startdate is always defined, in other words it may
not take the undefineddate value. The last line expresses
constraint 2.

Fig. 3 shows how constraint 3, related to the keys of
classes, is defined in the documentation fields of each class,
here class PERSON. The constraint involves several in-
stances of the class and must be defined at the level of the
class extension. It expresses that two distinct instances of
PERSON stored in the information system have different
card numbers. The resulting Z schema is:

PersonExt
Person : F PERSON
∀ p1, p2 : Person | p1 6= p2 • p1.cardnb 6= p2.cardnb

Similarly, GroupExt expresses that both groupcode and
groupname can be used as keys for class GROUP.

GroupExt
Group : F GROUP
∀ g1, g2 : Group | g1 6= g2 •

g1.groupcode 6= g2.groupcode
∧ g1.groupname 6= g2.groupname

Constraint 4 requires information from the association
between classes. It is expressed in the documentation field
of Members and ends up in schema MembersRel.

MembersRel
. . .

. . .
∀ p1, p2 : dom GroupOfPerson |

GroupOfPerson(p1) = GroupOfPerson(p2) •
∀ t1 : p1.tel • ∀ t2 : p2.tel •

prefix(t1) = prefix(t2)

The definition of prefix appears in the same file as type
definitions and is expressed as follows:

prefix : TEL → TEL
∀ t : TEL • prefix(t) = t div 100

Finally, constraint 5, which involves several classes
and associations is expressed in the documentation field
of the Rational Rose “Logical View” and completes the
GlobalView schemas.

GlobalView
MayAccessRel
AccessesOfBuildingRel
MembersRel
AccessesOfPersonRel
∀ a : Access •
BuildingOfAccess(a) ∈
BuildingOfGroup(GroupOfPerson(PersonOfAccess(a)))

In summary, RoZ allows a smooth integration of Z an-
notations in the fields of the Rational Rose environment,
and copies these in the related Z schemas. This brings sev-
eral advantages. First, it improves the expressiveness of the
graphical framework. Most contraints cannot be expressed
graphically in UML. Typically they should be expressed in
OCL. Compared to OCL, RoZ structures the constraints:
in OCL, constraints may only be expressed in the context



of a given class. With RoZ, the context can be the inten-
sion or the extension of the class, but also an association or
a view. From a methodological point of view, this structures
the process of identification of constraints. From a docu-
mentation point of view, this provides an easier identifica-
tion of the scope of a constraint. Finally, from a verification
point of view, we will see that it allows to progressively
take constraints into account and helps identify the oper-
ations which can be inconsistent with a constraint. More-
over, Z is supported by more tools, e.g. provers or anima-
tors, than OCL.

2.4. Operations

A UML class diagram only allows to specify the sig-
nature of the operations of a class. Their behaviour can
be specified in OCL as pre- and post-conditions, or par-
tially expressed through behavioural diagrams such as
State-Transition or Sequence diagrams. RoZ allows to ex-
press their specification as Z annotations, in a similar way
as constraints are included in the diagrams.

An additional feature of RoZ is the automatic produc-
tion of the specification of basic operations. Basic opera-
tions are operations that appear systematically in class dia-
grams: they include operations to modify the value of each
of the attributes of the class, operations to add or delete in-
stances of the class, and operations to update the associa-
tions. Fig. 4 shows how these operations are automatically
added to the class diagram by RoZ. They are then translated
into Z. For example, operation ChangeFirstname modifies
the firstname attribute of a given person, keeping other at-
tributes unchanged.

PERSONChangeFirstname
∆PERSON
newfirstname? : NAME
firstname′ = newfirstname?
cardnb′ = cardnb ∧ lastname′ = lastname
startdate′ = startdate ∧ enddate′ = enddate ∧ tel′ = tel

This operation is an “intension operation”, i.e. it is de-
fined in the context of a schema which describes the inten-
sion of the class. Sect. 4.2 will discuss how this operation
can be promoted at the level of the global view.

Other operations generated by RoZ affect the extension
of classes. For example, the following operations add and
remove instances of class PERSON.

AddPerson
∆PersonExt
person? : PERSON
Person′ =

Person ∪ {person?}

RemovePerson
∆PersonExt
person? : PERSON
Person′ =

Person \ {person?}

Other operations modify the links of associations, such
as LinkPersonOfGroup which defines a new member for a
given group.

LinkPersonOfGroup
ΞPersonExt; ΞGroupExt
∆MembersRel
person? : PERSON
group? : GROUP
GroupOfPerson′ = GroupOfPerson⊕ {person? 7→ group?}

RoZ also generates an initialization schema (where all
sets and associations are empty). This automatic generation
of operation specifications is a major asset when combined
with a Z animator, because it rapidly turns a data model, ex-
pressed as a class diagram, into a running prototype.

3. Animating it with Jaza

Jaza [14] is an animator that supports a wide subset of the
Z language. It is based on a combination of proof (simplifi-
cation, rewriting) and search (generate and test) techniques,
which allow to handle some level of non-determinism in the
specifications (provided the search space is not too large). In
the case of non-deterministic specifications, it returns one of
the valid solutions.

3.1. A small animation of the example

Here is a small sequence of animation steps for the ac-
cess control example. We start with an initialisation of the
data structures.

JAZA> do InitGlobalView

\lblot Access’==\{\}, AccessOfBuilding’==\{\},
AccessOfPerson’==\{\}, Building’==\{\},
BuildingOfAccess’==\{\}, BuildingOfGroup’==\{\},
Group’==\{\}, GroupOfBuilding’==\{\},
GroupOfPerson’==\{\}, Person’==\{\},
PersonOfAccess’==\{\}, PersonOfGroup’==\{\} \rblot

Jaza returns each element of the state and its associated
value. Fields are listed in alphabetical order. Here, every set
and association is empty. Let us add a person to that state.

JAZA> ; AddPerson
Input person? = \lblot cardnb==1212,
lastname=="Smith",firstname=="John",startdate==1,
enddate==1000, tel ==\{0123456789\} \rblot

Jaza returns the following state.
\lblot Access’==\{\}, AccessOfBuilding’==\{\},
AccessOfPerson’==\{\}, Building’==\{\},
BuildingOfAccess’==\{\}, BuildingOfGroup’==\{\},
Group’==\{\}, GroupOfBuilding’==\{\},
GroupOfPerson’==\{\},
Person’==\{\lblot cardnb==1212, enddate==1000,

firstname=="John", lastname=="Smith",
startdate==1, tel==\{123456789\} \rblot\},

PersonOfAccess’==\{\}, PersonOfGroup’==\{\} \rblot



Figure 4. Generation of basic operations

Let us add a group (for brevity and clarity reasons, we
omit some of the fields in the following transcipts).
JAZA> ; AddGroup
Input group? = \lblot groupcode=="G1",

groupname=="GroupOne" \rblot

\lblot ...,
Group’==\{\lblot groupcode=="G1",

groupname=="GroupOne" \rblot\},
GroupOfPerson’==\{\},
Person’==\{\lblot cardnb==1212, enddate==1000,

firstname=="John", lastname=="Smith",
startdate==1,tel==\{123456789\} \rblot\},

PersonOfGroup’==\{\} \rblot

We can now link the person to the group.
JAZA> ; LinkPersonOfGroup
Input person? = \lblot cardnb==1212,

lastname=="Smith",... \rblot
Input group? = \lblot groupcode=="G1",

groupname=="GroupOne" \rblot

\lblot ...,
Group’==\{\lblot groupcode=="G1",

groupname=="GroupOne" \rblot\},
GroupOfPerson’==

\{(\lblot cardnb==1212, enddate==1000,
firstname=="John", lastname=="Smith",
startdate==1, tel==\{123456789\} \rblot,
\lblot groupcode=="G1",
groupname=="GroupOne" \rblot)\},

Person’==\{\lblot cardnb==1212, enddate==1000,
firstname=="John", lastname=="Smith",
startdate==1, tel==\{123456789\} \rblot\},

PersonOfGroup’==
\{(\lblot groupcode=="G1",

groupname=="GroupOne" \rblot,
\{\lblot cardnb==1212, enddate==1000,

firstname=="John", lastname=="Smith",
startdate==1,tel==\{123456789\} \rblot\})\}

\rblot

Association links are represented as a pair of val-
ues. The translation rules of RoZ lead to a lot of redun-
dancy. First, every role is stored, resulting in two redun-
dant functions (here GroupOfPerson and PersonOfGroup).

Also, using schema types in associations leads to re-
peat all attributes of an instance in all links where
it is involved. This redundancy makes it more com-
plex to modify the value of a class attribute. But we
benefit from the fact that RoZ is able to generate appropri-
ate promotion operations (see Sect. 4.2). Here, operation
PersonChangeFirstnameandRels corresponds to the pro-
moted version of PERSONChangeFirstname. We can use it
to change the firstname of John Smith.

JAZA> ; PersonChangeFirstnameandRels
Input x? = \lblot cardnb==1212,lastname=="Smith",

firstname=="John", ... \rblot
Input newfirstname? = "Philip"

\lblot ...,Group’==\{\lblot groupcode=="G1",
groupname=="GroupOne" \rblot\},

GroupOfPerson’==
\{(\lblot cardnb==1212,enddate==1000,

firstname=="Philip", lastname=="Smith",
startdate==1, tel==\{123456789\} \rblot,

\lblot groupcode=="G1",
groupname=="GroupOne" \rblot)\},

Person’==\{\lblot cardnb==1212, enddate==1000,
firstname=="Philip", lastname=="Smith",
startdate==1,tel==\{123456789\} \rblot\},

PersonOfGroup’==
\{(\lblot groupcode=="G1",

groupname=="GroupOne" \rblot,
\{\lblot cardnb==1212, enddate==1000,

firstname=="Philip", lastname=="Smith",
startdate==1,
tel==\{123456789\} \rblot\})\}

\rblot

Our combination of RoZ and Jaza has conveniently han-
dled the redundancy of the data structure and has replaced
the firstname of John Smith everywhere it appears.

As class diagrams scale up, the states resulting from an
animation quickly become unreadable. Therefore, we have
developed a small visualizer, based on dotty [5], which turns



groupcode = ’G1’
groupname = ’GroupOne’

cardnb = 1212
enddate = 1000

firstname = ’Philip’
lastname = ’Smith’

startdate = 1
tel =  {123456789 }

Figure 5. A small object diagram

a Jaza/RoZ state into a graphical representation. For exam-
ple, Fig. 5 shows the current state of our animation. Fig. 6
shows a more complex state, with several persons, build-
ings and groups, and a single access; the corresponding tex-
tual representation of the state is 89 lines long.

3.2. Using non-promoted operations

One of the strengths, but also one of the difficulties of
Z, is to clearly define the scope of its operations. For exam-
ple, operation AddPerson of Sect. 2.4 has its scope restricted
to set Person, defined in schema PersonExt. The schema
clearly states how some fields of the state, here Person,
must evolve to conform with the specification. What hap-
pens to fields such as Group, Building or GroupOfPerson
when applying the operation AddPerson to a state that in-
cludes them? In early versions of Jaza, such fields did no
longer appear in the resulting state, because they were out of
the frame of AddPerson and hence there was no information
on the existence of a Group′, Building′ or GroupOfPerson′

value. With this earlier version of Jaza, the AddPerson
schema had to be completed as follows:

AddPersonPromoted
∆PersonExt
∆GlobalView
ΞMayAccessRel; ΞAccessesOfBuildingRel
person? : PERSON
Person′ = Person ∪ {person?}
AccessOfPerson′ = AccessOfPerson
GroupOfPerson′ = GroupOfPerson

The additional lines of the specification extend its scope
(∆GlobalView) and express that everything else than Person
does not change (using Ξ or additional equality constraints).

The latest versions of Jaza adopt a more flexible ap-
proach: everything outside the scope of an operation is kept
unmodified in the final state. Operations such as AddPerson
can be used without worrying about the rest of the state. Un-
fortunately, this approach may lead to inconsistent states,

with respect to the GlobalView constraints. For example, let
us call RemovePerson on the last state.
JAZA> ; RemovePerson
Input person? = \lblot cardnb==1212,

lastname=="Smith",... \rblot

\lblot ...,
Group’==\{\lblot groupcode=="G1",

groupname=="GroupOne" \rblot\},
GroupOfPerson’==

\{(\lblot cardnb==1212, enddate==1000,
firstname=="Philip", lastname=="Smith",
startdate==1, tel==\{123456789\} \rblot,
\lblot groupcode=="G1",
groupname=="GroupOne" \rblot)\},

Person’==\{\},
PersonOfGroup’==

\{(\lblot groupcode=="G1",
groupname=="GroupOne" \rblot,
\{\lblot cardnb==1212, enddate==1000,

firstname=="Philip", lastname=="Smith",
startdate==1,
tel==\{123456789\} \rblot\})\}

\rblot

The resulting state has excluded Smith from set Person,
but it remains in both GroupOfPerson and PersonOfGroup.
The resulting state does not fulfill the constraints of
MembersRel because the animator was not instructed
to take these constraints into account. This has moti-
vated the generation of the following operation:

CheckGlobalInvariant
ΞGlobalView

CheckGlobalInvariant does nothing: it simply copies the
initial state into a final state. But it is also instructed to com-
pute a final state which fulfills all the constraints included
recursively in GlobalView, which includes the constraints of
MembersRel. Executing CheckGlobalInvariant on the cur-
rent state yields the following result:

JAZA> ; CheckGlobalInvariant
No solutions

Systematic calls to CheckGlobalInvariant during an an-
imation session allow to identify those operations calls
which result in invariant violations, and avoids the system-
atic production of promoted versions of all operations.

3.3. Invalid execution sequences

Invalid preconditions Sect. 3.1 has shown a succesful ani-
mation. Executing RemovePerson led to an erroneous state.
Some executions may also fail to return a solution.
JAZA> do InitGlobalView
\lblot ...,Person’==\{\}, ...\rblot
JAZA> ; AddPerson
Input person? =
\lblot cardnb==1213, lastname=="Smith",
firstname=="John", startdate==1,
enddate==1000, tel ==\{0123456789\} \rblot

No solutions



Jaza provides an explanation facility (why command).
JAZA> why
\begin{schema}{AddPerson}
1 1213 \in 0 \upto 99999999
2 1213 \div 100 \mod 97 = 1213 \mod 100
3 ...
\end{schema}
The maximum number of true constraints was 1.

Here the failure results from the fact that constraint num-
ber 2 was false: 13 is not the checksum of 12! The input of
AddPerson, which must be of type PERSON, does not ver-
ify one of the constraints of the schema.

Failures appear when Jaza finds an inconsistent set of
constraints. Inconsistencies may result from a failed pre-
condition: the user has chosen inadequate inputs, or has
called the operation in an initial state which is not appro-
priate. Using the animator helps to identify more explicitly
the pre-conditions which are implicitly stated by the speci-
fication. Animation may also be used as a way to test con-
straints and validate that they correspond to the intended
meaning. Failed execution may also result from an incon-
sistent operation definition, i.e. an operation whose precon-
dition is always false. For such operations, several anima-
tion sequences will reveal that the operation always fails,
and the why construct may give hints on how to correct it.

Failed invariant In cases where the basic operation
fails to preserve invariant properties, a new version of
the operation must be written by the user. For exam-
ple, RemovePersonPromoted makes the promotion of
the operation at the level of the global view and explic-
itly states its precondition. Another possibility is to specify
an operation that will delete the links where the person ap-
pears. But this is more tricky, since removing a person may
also lead to remove the accesses he made.

RemovePersonPromoted
∆PersonExt
∆GlobalView
ΞMayAccessRel; ΞAccessesOfBuildingRel
person? : PERSON
Person′ = Person \ {person?}
person? 6∈ dom AccessOfPerson
person? 6∈ dom GroupOfPerson
AccessOfPerson′ = AccessOfPerson
GroupOfPerson′ = GroupOfPerson

An attempt to RemovePersonPromoted does no longer
lead to an inconsistent state, but returns no solutions.
JAZA> ; RemovePersonPromoted
Input person? = \lblot cardnb==1212, ... \rblot
No solutions

Non-determinism Jaza may refuse to animate non-
deterministic operations, such as GenTel, when the search
space is too large.

GenTel
t! : TEL

Its execution produces the following result.

JAZA> do GenTel
Problem: set is too big to enumerate

(˜ 10000000000 but current limit=1000)
0 \upto 9999999999

Since RoZ only produces deterministic operations, such
situations may only arise when the model also includes
user-defined operations.

4. Adapting RoZ to Jaza

4.1. Adapting the annotated class diagram

Adapting the types and definitions Some Z constructs are
not supported by Jaza, this is the case of axiomatic defini-
tions. In our example, undefineddate and prefix are defined
axiomatically. These definitions had to be redefined as:

undefineddate == 999999
prefix == {t : TEL • t 7→ (t div 100)}

This leads to choose a value for undefineddate and re-
sults in a slightly less abstract specification. Also, when
non-deterministic operations over given sets are specified, it
may be required to transform a given set into an enumerated
set, in order to provide Jaza with a defined search space.

Arities in the diagram In our original UML model, the
Members association mandated every person to be mem-
ber of one and only one group, and each group to have at
least one member. With such a model, it is mandatory to si-
multaneously create the first person and the first group. The
corresponding operation is more difficult to specify and to
implement. It does not correspond to the basic operations
generated by the tool. Using the animator helps locate such
difficulties in the diagram. It is then up to the analyst to de-
cide whether he manually writes a complex operation, or he
simply modifies the arities, as was done for Members.

Supported UML constructs RoZ does not support all con-
structs of the class diagram. For example, stereotypes will
never be supported by the tool. Other constructs, such as
agregation or composition, are partially translated: they are
considered as associations, but additional checks or proof
obligations are generated. Finally, some constructs, like in-
heritance, are translated by RoZ using non-deterministic
constructs that are not executable by Jaza3.

3 The translation is based on the disjunction of the schemas correspond-
ing to subclasses. As a result, the contents of fields specific to a given
class are not handled deterministically by the operations of the other
subclasses.



4.2. Evolutions of the RoZ rules

Several rules have been added or modified to fit with Jaza.

Initialisation and CheckGlobalInvariant The original RoZ
asked the user to provide explicitly an initialisation oper-
ation. Some rules have been added to automatically create
an initialisation operation that creates a state whose fields
are all empty sets. Still, this leaves the opportunity for the
user to define other initialisation schemas if needed. Sim-
ilarly, rules produce CheckGlobalInvariant which did not
make sense before RoZ was used with Jaza.

Redundant definitions In Sect. 2.2, the translation of as-
sociations, like Members, describes how one of the roles,
i.e. PersonOfGroup, can be constructed from the other
one, i.e. GroupOfPerson. Jaza requires a more symetri-
cal definition and new RoZ rules redundantly express how
GroupOfPerson can be constructed from PersonOfGroup.

MembersRel
PersonExt; GroupExt
PersonOfGroup : GROUP 7→ F PERSON
GroupOfPerson : PERSON 7→ GROUP
dom GroupOfPerson ⊆ Person
ran GroupOfPerson ⊆ Group
PersonOfGroup = {x : ran GroupOfPerson •

x 7→ {y : dom GroupOfPerson |
GroupOfPerson(y) = x • y}}

GroupOfPerson =
⋃
{x : dom PersonOfGroup •

{y : PersonOfGroup(x) • y 7→ x}}
. . .

Promotion Operations, such as PERSONChangeFirstname,
are defined on the intension of the class and do not re-
fer to fields that appear in the global state during the ani-
mation. They refer to values that may be elements of the
sets or in the domain or range of functions. Therefore pro-
motion mechanisms are needed to use such operations at
the level of extensions or associations.

All intension operations of class PERSON can be pro-
moted at the level of the class by the following schema:

ChangePerson
∆PersonExt; ∆PERSON
x? : PERSON
x? ∈ Person
θPERSON = x?
Person′ = Person \ {x?} ∪ {θPERSON′}

This operation modifies both an instance of PERSON
and the extension of the class. It takes as input the instance
whose attributes are modified and specifies how the exten-
sion of the class evolves. The schema must be combined
with an intension operation to constraint the evolution of

the fields of the instance. For example, here is the combina-
tion of ChangePerson with PERSONChangeFirstname.

PersonChangeFirstname ==

(ChangePerson ∧ PERSONChangeFirstname)
\(cardnb, cardnb′) \ (lastname, lastname′)
\(firstname, firstname′) \ (startdate, startdate′)
\(enddate, enddate′) \ (tel, tel′)

Basically, this is a conjunction of the operation defini-
tions. Hiding operators are used to hide the fields of the in-
stance. Otherwise, the resulting Jaza state would also refer
to these fields, which don’t make sense in the global view.

Similarly, the following schemas promote the operation
at the level of associations. RoZ looks for all associations
that involve the class of the modified instance and up-
dates the functions whose domain is included in PERSON
(here GroupOfPerson and AccessOfPerson). The remaining
roles (PersonOfGroup and PersonOfAccess) are automati-
cally updated by Jaza based on the constraints which de-
scribe how to construct these functions.

SubstitutePersonInRels
∆MembersRel; ∆AccessesOfPersonRel; ∆PERSON
ΞGroupExt; ΞAccessExt
GroupOfPerson′ = ({x : Person \ {θPERSON} • x 7→ x}

∪{θPERSON′ 7→ θPERSON})
o
9GroupOfPerson

AccessOfPerson′ = ({x : Person \ {θPERSON} • x 7→ x}
∪{θPERSON′ 7→ θPERSON})

o
9AccessOfPerson

PersonChangeFirstnameandRels ==

(PERSONChangeFirstname ∧
ChangePerson ∧ SubstitutePersonInRels)

\(cardnb, cardnb′) \ (lastname, lastname′)
\(firstname, firstname′) \ (startdate, startdate′)
\(enddate, enddate′) \ (tel, tel′)

Producing these promotion schemas is a crucial element
in our translation scheme from UML to Z, because we make
a wide use of schema types to translate the intension of a
class. Writing such complex schemas by hand is a clerical
and error-prone process. It is therefore interesting to have a
tool such as RoZ to produce these automatically.

5. Conclusion

This paper has presented a combination of RoZ with Jaza
to animate annotated UML class diagrams. It has shown
how an analyst can focus on the specification of the data
structures of an information system, and of the associated
constraints. RoZ automatically produces the specification



building = ’B1’
enddate = 100
person = 1212
startdate = 10

address = ’Campus’
buildingcode = ’B1’

cardnb = 1212
enddate = 1000

firstname = ’Jean’
lastname = ’Dupont’

startdate = 1
tel =  {123456789 }

groupcode = ’G2’
groupname = ’GroupeDeux’

groupcode = ’UG’
groupname = ’UnGroupe’

address = ’Campus’
buildingcode = ’B3’

cardnb = 1414
enddate = 999999

firstname = ’Joseph’
lastname = ’Fourier’

startdate = 1
tel =  {123456687 ,

123456688 }

cardnb = 1313
enddate = 999999

firstname = ’Jacques’
lastname = ’Martin’

startdate = 1
tel =  {123456788 }

Figure 6. A larger object diagram

of basic operations associated to these data structures and
translates the whole model into a Z specification. The model
can then be exploited by standard Z tools such as provers or
animators. Using an animator is a simple way to experiment
with the model, to find errors in the specified constraints, or
to identify operations which need more attention.
Limitations Today, the combination of RoZ and Jaza does
not cover all constructs of the UML class diagram, and
some of them (agregation/composition) are only partially
supported. It is our intent to try to support some level of in-
heritance, which is an intrinsic construct in object-oriented
modeling. Actually RoZ already translates inheritance into
Z, but in a way that is difficult to animate with Jaza.
Schema types The translation rules of RoZ make a wide use
of schema types to translate classes. This makes the trans-
lation and the animation more complex, but adequate pro-
motion operations can be synthesized to support it suitably.
Alternate translations exist, which ease the specification of
operations and the translation of inheritance, but make in-
variant constraints more difficult to express. It was our in-
tent in this work to evaluate to which extent RoZ and Jaza
could support the translation on the basis of schema types,
and the results are positive, for both RoZ and Jaza. On the
one hand, Jaza has proven to be able to support a wide num-
ber of Z constructs, and to handle complex state structures
such as the ones produced by RoZ. On the other hand, we
were able to adapt the RoZ translation rules to support the
promotion operations required by the schema types.
Future work Future work includes the support for some
level of inheritance, it also involves the development of a
better user interface for the use of Jaza in the context of
RoZ. Transforming RoZ/Jaza states into dotty graphs is one
element of such an environment. Additional facilities could

include graphical support for operation calls, or links with
tests cases expressed as UML sequence diagrams.
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