
Laboratoire d’Informatique de Grenoble
Unité de recherche UGA, Grenoble INP, CNRS
UMR 5217
700 AVENUE CENTRALE

CS 40700,
F-38058 GRENOBLE CEDEX 9 FRANCE

RoZ Notes v2.0

Yves Ledru

Univ. Grenoble Alpes, CNRS, Grenoble INP
LIG, UMR 5217,

F-38000, Grenoble, France
Yves.Ledru@imag.fr

c©Yves Ledru 2018 February 2018

mailto:Yves.Ledru@imag.fr


2



Chapter 1

RoZ in a few words

RoZ is a model transformation program which takes as input a class diagram, enhanced with Z annotations,
and produces a Z specification. The Z specification includes the types and data structures of the model,
and adds basic operations (constructors, destructors, setters, getters) to the Z specification. It also allows to
provide user-defined operations.

JazaGUI is a graphical user interface which integrates RoZ with the Jaza animator. It also allows to
represent the current state of the animation as an object diagram.

RoZ combined with Jaza has been presented in the following papers:

• Y. Ledru,
“Using Jaza to animate RoZ specifications of UML class diagrams”
ZUM’06, April 2006, postproceedings IEEE CS Press

• Sophie Dupuy, Yves Ledru, Monique Chabre-Peccoud,
“An Overview of RoZ: A Tool for Integrating UML and Z Specifications.”
CAiSE 2000: 417-430, LNCS 1789, Springer

1.1 What this version of RoZ does not
Until 2017, the original version of RoZ was distributed as a plugin for Rational Rose. With the advent of
eclipse and Papyrus, it has been ported to this platform. Most features of the original RoZ are supported
except the generation of proof obligations as presented in:

• Yves Ledru
“Identifying Pre-Conditions with the Z/EVES Theorem Prover.”
ASE 1998: , IEEE CS Press

If you feel that it should be a mandatory feature, please contact Yves Ledru.

1.2 RoZ Licensing
1. RoZ is distributed freely for non commercial research. The software is distributed without any

guarantee.

2. If you are planning to use RoZ for commercial activities please contact Yves.Ledru@imag.fr.

3. The contents of the lib directory are copied from the standard eclipse (luna) distribution and are
subject to the EPL license.

4. The Jaza animator is Copyright (C) Mark Utting, 2000-2005. It is available from https://
github.com/uho/jaza .

3

mailto:Yves.Ledru@imag.fr
https://github.com/uho/jaza
https://github.com/uho/jaza


4 CHAPTER 1. ROZ IN A FEW WORDS



Chapter 2

RoZ Installation

2.1 Prerequisites

2.1.1 Eclipse and Papyrus

This new version of RoZ takes as input UML models created with the eclipse environment, in particular
with the Papyrus tool. RoZ has been tested with

• eclipse Luna under windows, with Papyrus 1.0

• eclipse Mars under windows, with Papyrus 1.1

• eclipse Neon under windows, with Papyrus 2.0

• eclipse Oxygen under windows, with Papyrus 3.2

In order to use RoZ, you will need a version of eclipse with Papyrus. You can get such a version
of Papyrus by downloading Eclipse Modeling Tools from http://www.eclipse.org/ , then install
Papyrus via Install more Modelling Tools or via Help>Install Modeling Components.

2.1.2 Graphviz

JazaGUI uses Graphviz to visualize the object diagram.
You can download Graphviz from https://www.graphviz.org/

2.1.3 Java

JazaGUI is a java application and requires to have a java JRE installed on your machine. The command
”java” must be on your path.

2.1.4 Optional items

• This distribution of RoZ includes the jaza animator. But you might want to read its documentation
which is available at https://github.com/uho/jaza/tree/master/doc.

• Community Z tools (http://czt.sourceforge.net/) is a set of tools for Z. They can be
loaded as an eclipse plugin to check that Z specifications are syntactically correct.

5

http://www.eclipse.org/
https://www.graphviz.org/
https://github.com/uho/jaza/tree/master/doc
http://czt.sourceforge.net/


6 CHAPTER 2. ROZ INSTALLATION

2.2 Installation of RoZ and JazaGUI
RoZ is embedded in JazaGUI. In order to install RoZ, you need to get a zip of RoZandJazaGUI. Unzip it
on your machine, and don’t modify the structure of directories!

You must modify file jazaGUI.bat and add the address of dotty.exe, located in the Graphviz distribution.

1. Unzip RoZandJazaGUI.zip into a directory (typically, C:\Program Files\JazaGui)

2. Open the jazaGUI.bat file with a text editor. It includes a line of the form
java -jar %˜dp0\JazaGUI_Project.jar %˜dp0\jaza.exe "C:\...\bin\dotty.exe"

3. Replace "C:\...\bin\dotty.exe" with the path to the dotty.exe executable on your machine.

4. Add the directory which includes jazaGUI.bat to your path.1

1To set the environment variable, right click on the computer icon in the windows explorer and select properties, then advanced
system settings and click the Environment Variables button.



Chapter 3

Try it on a simple example

3.1 A simple model
In this chapter, we will work on a simple model which does not include Z types or invariants. We will see
how this class diagram can be translated into Z and how it can be animated with Jaza.

The proposed model features classes CLIENT and SERVER. Both have a single attribute, which is the
IP address of the machine. A server is linked to several clients, and a client is linked to one and only one
server. ADDRESS is declared as a primitive type.

Please note that the current version of RoZ does not support inheritance. So we cannot model this
problem by specializing an abstract class, which stores the address, into clients and servers.

3.2 Import the model into eclipse
In the Examples directory of the RoZandJazaGUI distribution, you will find two versions of a client-server
example. Let us import the simplest version as an eclipse project:

1. Open Eclipse.

2. Import the file ClientServer.zip in your Eclipse workspace. (File>import>General , then
Existing project into workspace, then select archive file.

3. Select file PapyrusClientServer.zip and click on Finish.

3.3 Launching RoZ and JazaGUI
1. Open a command window and go to the directory which stores the client server model:

> cd PapyrusClientServer

2. Lauch JazaGUI:

> jazagui

7



8 CHAPTER 3. TRY IT ON A SIMPLE EXAMPLE

This will open a window like this one:

RoZ buttonRoZ icon

Output window

Input window

This window includes :

• A RoZ button, which launches the RoZ transformation.

• A RoZ icon, which is stored on a machine of our laboratory. This will eventually provide us with
anonymous information about the usage of RoZ. If your machine is not connected to the Internet,
JazaGUI waits for a small time, and then starts normally. This will simply slow down the launch of
JazaGUI.

• An input window for inputs to send to the jaza animator.

• An output window which displays the answers of the animator.

• Several menus and buttons to interact with Jaza or RoZ.

3.4 Translation into Z

1. Click on the RoZ button, at the top right of the JazaGUI window. This will prompt a choose window
displaying the contents of the directory where JazaGUI was launched. 1

1Actually, this choose window is only opened the first time you click on the button. Subsequent clicks will automatically select
the same file. If you need to process another file, choose ’Tool> RoZ another UML File’.



3.5. MODEL ANIMATION WITH JAZA 9

2. choose the model.uml file and open it.
This will generate a model.zed file and prompt the following warnings:

The contents of the model.zed file are explained in appendix.

3.5 Model animation with Jaza

3.5.1 Loading the Z model in Jaza
Click on “Reset” to empty the jaza workspace and “Load Z File” to load file model.zed. The Jaza output
window will display the following message:

Loading ’C:\Users\ledru\workspaces\LunaRoZ\PapyrusClientServer\model.zed’ ...
Added 41 definitions.
JAZA>

If the zed model is not syntactically correct, an error message will be displayed.



10 CHAPTER 3. TRY IT ON A SIMPLE EXAMPLE

3.5.2 Initializing the animation
The following commands are stored in file SCENARIO.TXT . You can copy and paste them in the input
window, using CTRL-V to paste them.

You should now call an initialisation operation of the zed specification. This will create the first state
of your animation. To do this, you should call the “do” command and provide the initialisation operation
as argument. Type the following text in the Jaza input window, then hit the return key or click on “Send
Jaza Input”

do Init\_model

The output window displays the following text:

\lblot Client’==\{\}, Server’==\{\}, clientsOfServer’==\{\},
serverOfClient’==\{\} \rblot

JAZA>

It corresponds to the current state of the animation. In this initial state, the sets which include all current
instances of the classes are empty, and the functions corresponding to the association roles are also empty.

Let us create an object of class Server:

; Server\_new

The semi-colon expresses that this operation is applied on the current state. The output window displays
the following message, asking for an object of class Server:

Input server? =

The next input is a tuple including all attribute values for the object:

\lblot address == "1.2.3.4" \rblot

The resulting state is now displayed:

\lblot Client’==\{\}, Server’==\{\lblot address=="1.2.3.4" \rblot\},
clientsOfServer’==\{\}, serverOfClient’==\{\} \rblot

JAZA>

Now, the set storing the instances of class Server has a unique element.
We can create a second server. Let us input:

; Server\_new
\lblot address == "5.6.7.8" \rblot

Which produces the following state:

\lblot Client’==\{\},
Server’==\{\lblot address=="1.2.3.4" \rblot,

\lblot address=="5.6.7.8" \rblot\},
clientsOfServer’==\{\}, serverOfClient’==\{\} \rblot

Let us now create an instance of class Client. A closer look at the class diagram tells us that each client
is linked to a server. So we should invoke an operation which creates the client and its link simultaneously.

; Client\_newWithLinks

This operation first requires a client:



3.5. MODEL ANIMATION WITH JAZA 11

Input client? =

Let us input a client:

\lblot address == "11.12.13.14" \rblot

then it requires a server

Input serverOfClient? =

Let us answer with an existing server:

\lblot address == "1.2.3.4" \rblot

This produces the following state:

\lblot Client’==\{\lblot address=="11.12.13.14" \rblot\},
Server’==\{\lblot address=="1.2.3.4" \rblot,

\lblot address=="5.6.7.8" \rblot\},
clientsOfServer’==\{(\lblot address=="1.2.3.4" \rblot,

\{\lblot address=="11.12.13.14" \rblot\})\},
serverOfClient’==\{(\lblot address=="11.12.13.14" \rblot,

\lblot address=="1.2.3.4" \rblot)\} \rblot

We can create a second client:

; Client\_newWithLinks
\lblot address == "21.22.23.24" \rblot
\lblot address == "1.2.3.4" \rblot

which produces the following state:

\lblot Client’==\{\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\},

Server’==\{\lblot address=="1.2.3.4" \rblot,
\lblot address=="5.6.7.8" \rblot\},

clientsOfServer’==\{(\lblot address=="1.2.3.4" \rblot,
\{\lblot address=="11.12.13.14" \rblot,

\lblot address=="21.22.23.24" \rblot\})\},
serverOfClient’==\{(\lblot address=="11.12.13.14" \rblot,

\lblot address=="1.2.3.4" \rblot),
(\lblot address=="21.22.23.24" \rblot,
\lblot address=="1.2.3.4" \rblot)\} \rblot

3.5.3 Visualizing the current state

The current state becomes difficult to read. Therefore, you can call “Curr to Dotty” which will use dotty.exe
from the GraphViz toolset to display an object diagram of the current state. This opens the following
window.



12 CHAPTER 3. TRY IT ON A SIMPLE EXAMPLE

The window diplays our two servers and our two clients.

3.6 Checking incorrect states and getting explanations
Each Z operation checks that its scope verifies the associated invariant properties in both initial and final
states. Unfortunately, it is possible to reach states which are incorrect with respect to properties out of the
scope of the operations which led to this state.

For example, let us create a client without server:

; Client\_new
\lblot address == "101.202.303.404" \rblot

This produces the following (erroneous) state.

This state does not conform to the class diagram, because the third client should be linked to a server.
Unfortunately, this was not noticed by the jaza animator because the scope of operation Client\_new is
limited to class CLIENT.

We can force evaluation of all invariant properties on the current state by calling operation
CheckGlobalInvariant, or hitting the “Check Global Invariant” button. This produces the following
result:

No solutions
JAZA>

Actually, CheckGlobalInvariant is an operation which does nothing, but applies to the largest
scope. Therefore, it checks all invariants of this scope in its initial state, and finds constraints that are not
satisfied. You can then ask Jaza why it does not find solutions by typing :

why



3.7. INCORRECT OPERATION CALLS 13

This produces the following result to explain why it does not find solutions:

\begin{schema}{CheckGlobalInvariant}
1 false \because{\bigcup
\ran
\{(\lblot address=="1.2.3.4" \rblot,

\{\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\})\} =

\{\lblot address=="101.202.303.404" \rblot,
\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\}; }

2 Client’==\{\lblot address=="101.202.303.404" \rblot,
\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\}:\finset

\{address:ADDRESS @ \lblot address==address \rblot\}
3 ...
...
The maximum number of true constraints was 0.
JAZA>

Here, it reports that it was not able to satisfy any constraint. So the first constraint is what caused a
problem. This first constraint tells that :

1 false \because{\bigcup
\ran
\{(\lblot address=="1.2.3.4" \rblot,

\{\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\})\} =

\{\lblot address=="101.202.303.404" \rblot,
\lblot address=="11.12.13.14" \rblot,
\lblot address=="21.22.23.24" \rblot\}; }

It actually explains that the range of the clientsOfServer function should contain all three clients.

3.7 Incorrect operation calls
Let us consider a smaller scenario, where one tries to create a client associated to a non-existing server.
Here, the association between servers and clients is in the scope of the operation, so its associated invariant
properties should be checked before and after the execution of the operation.

do Init\_model
; Client\_newWithLinks
\lblot address == "11.12.13.14" \rblot
\lblot address == "1.2.3.404" \rblot

This scenario computes the initial state correctly, but then reports “No solutions” for the operation.
Asking “why” produces the following explanation:

...
5 false \because{\lblot address=="1.2.3.404" \rblot \in \{\}; }
...
The maximum number of true constraints was 4.

This means thatt the first four constraints were satisfied, but not constraint 5 which requires that the
server belongs to the set of existing servers. Unfortunately, this set is currently empty.



14 CHAPTER 3. TRY IT ON A SIMPLE EXAMPLE

3.8 Additional commands of JazaGUI
Undo button Click on this button to undo the last operation call. You may only undo the last operation.

File > Open Input File :
Command “Open Input File” loads an input file, like Scenario.txt in the input window of JazaGUI.

View > History The Input history is the list of all commands that were input to Jaza. This is particularly
useful to record an animation into a scenario file.

The Output history is the list of all text that appeared in the output window. The Input and Output
history mixes the two histories to display commands and responses.

Tools>RoZ another File The command RoZ another File allows to change the UML input file for RoZ.

3.9 Conclusion
In this chapter, we have seen how a class diagram can be translated in Z by RoZ and animated using Jaza.
The connection to dotty allows to visualize the current state as an object diagram. We have also seen how
invariant properties are checked on the scope of operations, or can be forced to check in the global scope.
Finally, the use of the “why” command provides explanations on the failure of operations.

At this stage, we did not see Z specifications. This shows that the tool can be used without mastering
formal specifications. In the next chapter, we will see how Z annotations can be added to the diagram and
inserted in the formal specification.



Chapter 4

A more elaborated example

4.1 RoZ profile
We will now consider an advanced version of the client server example which uses the RoZ profile and an-
notates the model with Z properties. But this requires to use a UML profile, named RoZConstraintProfile
and defined in RoZConstraint.profile.uml. The profile diagram is the following one:

This diagram defines stereotypes for constraints and UML dependencies. In this more elaborated ex-
ample, we use the following stereotypes:

• RoZDefinition applies to constraints which refine a type definition.

• RoZInvariant applies to constraints which express an invariant at the level of an association or a
package.

• RoZExtensionInv applies to constraints expressing an invariant on the extension of a class1.

• RoZIntensionInv applies to constraints expressing an invariant on the class intension2.

The sterotype associated to a constraint is used by RoZ to locate the adequate place for the constraint in
the Z specification.

1The extension of a class is the set of objects of the class currently available in the information system.
2The intension of a class is the set of all possible objects of the class. The extension of a class is included in its intension.

15



16 CHAPTER 4. A MORE ELABORATED EXAMPLE

4.1.1 Installing the RoZ profile
The RoZ profile is like a project, stored in the RoZProfile.zip file of the Examples directory. So you
should install it in your workspace with the import command, and select “Existing projects into workspace”.

4.1.2 The new Client Server project

4.1.3 Installing the new Client Server Project
The new client server project is stored in file PapyrusClientServer2.zip. Install it in your workspace
as a project. When you will first open the model, it might prompt the following window:

You should simply delete these stereotypes, by applying the recommended action.



4.1. ROZ PROFILE 17

4.1.4 Class diagram

The class diagram introduces an additional class (CLUSTER) and more class attributes. It also introduces
the types of these attributes, several constants, and numerous constraints. RoZ also allows to add operations
and their specifications.

Type definitions Most types are introduced as PrimitiveType. ADDRESS and NAME are intro-
duced this way. These types will be translated as Z given types. Some types are enumerated types (PRO-
TOCOL and LANG) and are introduced as a UML Enumeration. These types will be translated as Z
enumerated types.

Type QOS is introduced as a Primitive type, associated to a constraint stereotyped as roZDefinition.
This constraint specifies that QOS is an integer interval ranging from 0 to 1000.

NBCLIENTS is also associated to a roZDefinition, whose constraint says that NBCLIENTS is
equal to the set of natural numbers. So this type is simply a renaming for naturals. A constant is associated
to this type: undefMax is defined as natural number 9999. The constant definition takes two forms: an
axiomatic definition, which is compatible with classical Z type-checkers. Unfortunately, jaza does not
support axiomatic definitions. Therefore, a second definition is given where undefMax is defined as a
syntactic equivalence to 99993.

Class SERVER Class SERVER features four attributes: the IP address, the maximum number of con-
nections it can support, its minimum and maximum Quality of Service. An invariant expresses that the
minimum QoS is always smaller than the maximum QoS. This is an intension invariant, i.e. it is ver-

3The current version of RoZ only generates the specification for Jaza. In future versions, an option might be provided to choose
between axiomatic definitions and their Jaza counterpart.



18 CHAPTER 4. A MORE ELABORATED EXAMPLE

ified by every object of the class. It is expressed by constraint MinMaxQoS, which is stereotyped as
RoZIntensionInv.

Another constraint applies to class SERVER: the IP address is a key for the class. This is expressed by
constraint KeyOfServer which applies to the extension of the class. It is stereotyped as RoZExtensionInv.

Class CLIENT Class CLIENT has three attributes: the IP address, the language of the client, and the
required quality of service. Only one constraint applies to this class: it is the key constraint, expressed by
KeyOfCLient and stereotyped as RoZExtensionInv.

Class CLUSTER A server may belong to a cluster. A cluster is characterized by its name and the
set of languages it supports. The name is the key of class CLUSTER. This is expressed by constraint
keyOfCluster stereotyped as RoZExtensionInv.

ClientServerRel Association Every client is linked to one and only one server. This association is also
the place to express three constraints, stereotyped as RoZInvariant:

• nbConnections expresses that the number of clients attached to a server is always less than or equal
to the maximum number of connections supported by the server.

• SufficientQoS expresses that the QoS required by the client is less than or equal to the minimum QoS
offered by the server

• UniqueAddresses expresses that the addresses of servers are disjoint from the adresses of clients.

ServerClusterRel Association This association expresses that a cluster may include several servers, and
that each server belongs at most to one cluster. No constraint is associated to this association.

Package ClientServer The three classes and the two associations are grouped in a package. This is the
place to express global constraints which link attributes of CLIENT with attributes of CLUSTER. Here
constraint SupportedLanguage, stereotyped as RoZInvariant, expresses that the language of the client
is one of the languages of the cluster.

Operation findOtherServerInCluster RoZ automatically generates basic operations (constructors, de-
structors, setters and getters), but application specific operations may also be necessary. Besides the type
definitions and the constraints expressed at every level of the class diagram, RoZ also supports the user
definition of operations. These user-defined operations are declared as methods of the class, and use con-
straints to express post-conditions, and to specify their scope. These stereotyped constraints for scope and
post-condition do not appear in the graphical UML view, but in the model explorer of eclipse, as shown on
the following screen shot:



4.2. SPECIFICATION GENERATION AND ANIMATION 19

findOtherServerInCluster is an example of such application specific operations. This operation takes as
input the current object which can be referred to as this? in the post-conditions. The result of the method
is referred to as result! . It is possible to provide additional input parameters in the method declaration.
The scope explicits which schemas will be read and/or modified by the operation. Here the constraint is

\Xi model

which means that the operation has read access (\Xi) to the whole model.

The post-conditions are stereotyped constraints. Here the post-condition includes most of the specifi-
cation of the operation, written as follows:

serverOfClient(this?) \in \dom clusterOfServer \\
\# (serversOfCluster(clusterOfServer(serverOfClient(this?)))) > 1 \\

result! \in (serversOfCluster(clusterOfServer(serverOfClient(this?))))
\setminus \{ serverOfClient(this?) \}\\

result!.minQoS \geq this?.requiredQoS

The operation returns another server of the cluster than the current one, with a sufficient QoS. The first
line of the post-condition states that the server of the current object is member of a cluster. The second line
expresses that this cluster includes more than one server. The third line expresses that the result is a server
of the cluster different than the current server. Finally the fourth line expresses that the result has sufficient
QoS.

4.2 Specification generation and animation

You can now use JazaGUI to call RoZ on the class diagram, and then to perform animations. Two scenarios
are provided:

• The first scenario creates one cluster, one server and two clients, as shown in the following object
diagram.



20 CHAPTER 4. A MORE ELABORATED EXAMPLE

The last commands of the scenario lead to invariant violations.

• The second scenario creates three servers, two clients and one cluster.

4.3 Conclusion
This section has shown how a UML class diagram can be enhanced with Z annotations. These annotations
express invariant properties, and operation specifications.



Chapter 5

Misc

5.1 Contacts
Please send your questions/reactions to Yves.Ledru@imag.fr.

5.2 Acknowledgements
• The first version of RoZ has been mainly developed by Sophie Dupuy during her PhD thesis.

• JazaGui has been developed by Sébastien Laborie.

• The adaptation of Tobias to Jaza benefited from the active help of Mark Utting.

• Mohamed Amine Labiadh provided useful hints when redeveloping RoZ under eclipse.

• German Vega is now working on the next version of RoZ for eclipse and helped maintaining the
current version.

21

mailto:Yves.Ledru@imag.fr


22 CHAPTER 5. MISC



Appendix A

Operations generated by RoZ

This document aims to list the basic operations automatically generated by RoZ. To illustrate this document,
we rely on the following example:

At this stage, no constraint or Z annotation is attached to the diagram.

A.1 Translation of the data structures
The types and data structures are translated in Z as follows.

[ADDRESS]

CLIENT
address : ADDRESS

ClientExt
Client : FCLIENT

SERVER
address : ADDRESS

ServerExt
Server : F SERVER

ClientServerRel
ClientExt; ServerExt
clientsOfServer : SERVER 7→ FCLIENT
serverOfClient : CLIENT 7→ SERVER

dom clientsOfServer ⊆ Server⋃
(ran clientsOfServer) = Client

clientsOfServer = {x : ran serverOfClient • x 7→ {y : dom serverOfClient | x = serverOfClient(y)}}
serverOfClient =

⋃
{x : dom clientsOfServer • {y : clientsOfServer(x) • y 7→ x}}

23



24 APPENDIX A. OPERATIONS GENERATED BY ROZ

model
ClientExt
ServerExt
ClientServerRel

A.2 List of generated operations
The operations are prefixed with the name of their class. There are a few operations on the whole model
(initialisation, invariant checking and coverage measurement).

A.2.1 Operations on the whole model
Model initialization

The initialization operation does not take input parameters and does not return any value, but initializes the
state. Its name depends on the name of the model.

• Init model

Checking all invariants

This operation checks all invariants of the model but does not modify the state. It is an operation which
doe not modify the state and only succeeds if the state verifies all invariants.

• Check model

• CheckGlobalInvariant

Coverage measurement

Coverage measurement checks that the current state of the model hits all sets and functions. It returns 3
values reporting how much is covered, what is the maximum value of the coverage in this model, and how
much is not covered yet. The best measure is when znotCovered! is equal to 0.

• Coverage model == [. . . ; zcoverage!, zcoverageMax!, znotCovered! : Z | . . .]

A.2.2 Constructors and destructors
Every class comes with two constructors. The first one Class new creates a single object and adds it to
the extension of the class, taking as argument a binding of the type of the INTENSION. The second one
Class newWithLinks creates an object and links it to other objects. This second constructor is the one that
should be used to construct correct models. Links are limited to the only mandatory ones. For example,
the constructor of CLIENT takes as argument a client and the server linked to it, but the constructor of
SERVER does not take a client in its arguments.

• Client new == [. . . ; client? : CLIENT | . . .]

• Client newWithLinks == [. . . ; client? : CLIENT; serverOfClient? : SERVER | . . .]

• Server new == [. . . ; server? : SERVER | . . .]

• Server newWithLinks == [. . . ; server? : SERVER | . . .]



A.2. LIST OF GENERATED OPERATIONS 25

Each class also features two destructors. One that destroys only the object, and the other one which
also deletes the associated links. It is this second destructor that should be used to keep the consistency of
the model. Both take the same arguments.

• Client delete == [. . . ; this? : CLIENT | . . .]

• Client delWithLinks == [. . . ; this? : CLIENT | . . .]

• Server delete == [. . . ; this? : SERVER | . . .]

• Server delWithLinks == [. . . ; this? : SERVER | . . .]

A.2.3 Getters and setters
There are several operations generated for getters and setters but the one that should be used is the one
hereunder. The setter takes an object and a new value for its attribute as argument. The setter only takes an
object, and returns a result of the type of the attribute.

• Client getAddress == [. . . ; this? : CLIENT; result! : ADDRESS | . . .]

• Client setAddress == [. . . ; this? : CLIENT; address? : ADDRESS | . . .]

• Server getAddress == [. . . ; this? : SERVER; result! : ADDRESS | . . .]

• Server setAddress == [. . . ; this? : SERVER; address? : ADDRESS | . . .]

A.2.4 Operations on associations
Each association has operations to create and delete links, and the operations are defined at both ends. It
also includes getters for each of the roles.

• Client linkServerOfClient == [. . . ; this? : CLIENT; s? : SERVER | . . .]

• Client unlinkServerOfClient == [. . . ; this? : CLIENT; s? : SERVER | . . .]

• Client getServerOfClient == [. . . ; this? : CLIENT; result! : SERVER | . . .]

• Server linkClientsOfServer == [. . . ; this? : SERVER; c? : CLIENT | . . .]

• Server unlinkClientsOfServer == [. . . ; this? : SERVER; c? : CLIENT | . . .]

• Server getClientsOfServer == [. . . ; this? : SERVER; result! : FCLIENT | . . .]



26 APPENDIX A. OPERATIONS GENERATED BY ROZ



Appendix B

Code of the generated operations

In this appendix, we give the detailed code of the generated operations for the simple version of the client-
server example.

ChangeClient
∆ClientExt
∆CLIENT
this? : CLIENT

this? ∈ Client
θCLIENT = this?
Client′ = Client \ {this?} ∪ {θCLIENT ′}

SubstituteClientInRels
∆ClientServerRel
ΞServerExt
∆CLIENT

∃ newId : CLIENT 7→ CLIENT | newId = {x : Client \ {θCLIENT} •
x 7→ x} ∪ {θCLIENT 7→ θCLIENT ′} • serverOfClient′ = newId∼ o

9 serverOfClient

Client new
∆ClientExt
client? : CLIENT

Client′ = Client ∪ {client?}

Client newWithLinks
∆ClientExt
∆ClientServerRel
ΞServerExt
client? : CLIENT
serverOfClient? : SERVER

Client′ = Client ∪ {client?}
serverOfClient? ∈ Server
serverOfClient′ = serverOfClient ∪ {client? 7→ serverOfClient?}

27



28 APPENDIX B. CODE OF THE GENERATED OPERATIONS

Client delete
∆ClientExt
this? : CLIENT

Client′ = Client \ {this?}

Client delWithLinks
∆ClientExt
∆ClientServerRel
ΞServerExt
this? : CLIENT

Client′ = Client \ {this?}
serverOfClient′ = {m : serverOfClient | first(m) 6= this?}

Client setAddress INT
∆CLIENT
address? : ADDRESS

address′ = address?

Client setAddress EXT == (ChangeClient ∧ Client setAddress INT) \ (address, address′)

Client setAddress == (ChangeClient ∧ Client setAddress INT ∧ SubstituteClientInRels) \ (address, address′)

Client getAddress INT
ΞCLIENT
result! : ADDRESS

result! = address

Client getAddress EXT == (ChangeClient ∧ Client getAddress INT) \ (address, address′)

Client getAddress == (ChangeClient ∧ Client getAddress INT ∧ SubstituteClientInRels) \ (address, address′)

Client linkServerOfClient
∆ClientServerRel
ΞClientExt
ΞServerExt
this? : CLIENT
s? : SERVER

s? ∈ Server
this? ∈ Client
serverOfClient′ = serverOfClient ⊕ {this? 7→ s?}



29

Client unlinkServerOfClient
∆ClientServerRel
ΞClientExt
ΞServerExt
this? : CLIENT
s? : SERVER

this? ∈ dom serverOfClient
serverOfClient′ = serverOfClient \ {this? 7→ s?}

Client getServerOfClient
Ξmodel
this? : CLIENT
result! : SERVER

result! = serverOfClient(this?)

ChangeServer
∆ServerExt
∆SERVER
this? : SERVER

this? ∈ Server
θSERVER = this?
Server′ = Server \ {this?} ∪ {θSERVER ′}

SubstituteServerInRels
∆ClientServerRel
ΞClientExt
∆SERVER

∃ newId : SERVER 7→ SERVER | newId = {x : Server \ {θSERVER} •
x 7→ x} ∪ {θSERVER 7→ θSERVER ′} • clientsOfServer′ = newId∼ o

9 clientsOfServer

Server new
∆ServerExt
server? : SERVER

Server′ = Server ∪ {server?}

Server newWithLinks
∆ServerExt
server? : SERVER

Server′ = Server ∪ {server?}

Server delete
∆ServerExt
this? : SERVER

Server′ = Server \ {this?}



30 APPENDIX B. CODE OF THE GENERATED OPERATIONS

Server delWithLinks
∆ServerExt
∆ClientServerRel
ΞClientExt
this? : SERVER

Server′ = Server \ {this?}
clientsOfServer′ = {m : clientsOfServer | first(m) 6= this?}

Server setAddress INT
∆SERVER
address? : ADDRESS

address′ = address?

Server setAddress EXT == (ChangeServer ∧ Server setAddress INT) \ (address, address′)

Server setAddress == (ChangeServer ∧ Server setAddress INT ∧ SubstituteServerInRels) \ (address, address′)

Server getAddress INT
ΞSERVER
result! : ADDRESS

result! = address

Server getAddress EXT == (ChangeServer ∧ Server getAddress INT) \ (address, address′)

Server getAddress == (ChangeServer ∧ Server getAddress INT ∧ SubstituteServerInRels) \ (address, address′)

Server linkClientsOfServer
∆ClientServerRel
ΞClientExt
ΞServerExt
this? : SERVER
c? : CLIENT

c? ∈ Client
this? ∈ Server
serverOfClient′ = serverOfClient ⊕ {c? 7→ this?}

Server unlinkClientsOfServer
∆ClientServerRel
ΞClientExt
ΞServerExt
this? : SERVER
c? : CLIENT

this? ∈ dom clientsOfServer
serverOfClient′ = serverOfClient \ {c? 7→ this?}



31

Server getClientsOfServer
Ξmodel
this? : SERVER
result! : FCLIENT

result! = clientsOfServer(this?)

Init model
model ′

Client′ = ∅
Server′ = ∅
clientsOfServer′ = ∅
serverOfClient′ = ∅

Check model
Ξmodel

CheckGlobalInvariant == Check model

Coverage model
Ξmodel
zcoverage!, zcoverageMax!, znotCovered! : Z

zcoverage! = 0 + ( IF Client 6= ∅ THEN 1 ELSE 0)+
( IF Server 6= ∅ THEN 1 ELSE 0)+
( IF clientsOfServer 6= ∅ THEN 1 ELSE 0)+
( IF serverOfClient 6= ∅ THEN 1 ELSE 0)

zcoverageMax! = 4
znotCovered! = zcoverageMax!− zcoverage!


	RoZ in a few words
	What this version of RoZ does not
	RoZ Licensing

	RoZ Installation
	Prerequisites
	Eclipse and Papyrus
	Graphviz
	Java
	Optional items

	Installation of RoZ and JazaGUI

	Try it on a simple example
	A simple model
	Import the model into eclipse
	Launching RoZ and JazaGUI
	Translation into Z
	Model animation with Jaza
	Loading the Z model in Jaza
	Initializing the animation
	Visualizing the current state

	Checking incorrect states and getting explanations
	Incorrect operation calls
	Additional commands of JazaGUI
	Conclusion

	A more elaborated example
	RoZ profile
	Installing the RoZ profile
	The new Client Server project
	Installing the new Client Server Project
	Class diagram

	Specification generation and animation
	Conclusion

	Misc
	Contacts
	Acknowledgements

	Operations generated by RoZ
	Translation of the data structures
	List of generated operations
	Operations on the whole model
	Constructors and destructors
	Getters and setters
	Operations on associations


	Code of the generated operations

