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1 Introduction

Software testing appears nowadays as one of the major techniques to evaluate the
conformance between a specification and some implementation. Some may argue
that testing only reveals the presence of errors and that conformance may only
be totally guaranteed by formal proof, exhaustive testing or a combination of
both techniques. Unfortunately, such techniques are often very difficult to apply.
In such cases, testing may contribute to increase the confidence that the im-
plementation conforms to its specification. Confidence may result from coverage
measurements, from the principles of the test synthesis or selection technique,
from the size of the test suite, or from the expertise of the test engineers.

Industrial experiments [5] have shown that test cases within a large test suite
often feature a high level of similarity. Many test cases correspond to the same
sequence of method calls, with different parameters. Producing these test cases
1s a repetitive task that reveals the need for appropriate tool support.

From these observations, we have developed the TOBIAS test generator!
which is aimed at the production of a large set of similar test cases. TOBIAS
starts from a test pattern and a description of its instantiations. The tool then
unfolds the pattern into a large set of test cases which can be output according
to the format of several test tools: calls to VDM operations [12] for VDM Tools,

! TOBIAS was developed within the COTE project, with the support of the French
RNTL program. The COTE project gathered Softeam, France Telecom R&D, Gem-
plus, IRISA and LSR/IMAG.



Java test cases for JUnit[9] and JML specifications [8, 10, 11], and test purposes
for TGV [7].

TOBIAS is a typical example of combinatorial testing tool. Its originality is
to deal with sequences of method calls, instead of only combination of parameter
values. This allows to use the tool with systems that require several interactions
before reaching some “interesting” states. It also allows to design test cases in
terms of the behavior that has to be exercised.

This paper gives an introduction to TOBIAS. Sect. 2 recalls the principles of
conformance testing using executable model-based specifications. Then Sect. 3
gives a quick presentation of the tool and reports on its capability to find errors,
on the basis of a simple example, and from the results of industrial experiments.
The intrinsic limitation of the tool is that it is subject to combinatorial explosion.
Sect. 4 presents two kinds of filters that can be used with TOBIAS to help master
the size of test suites. Finally, Sect. 5 draws the conclusions and perspectives of
this work.

2 Conformance testing with model-based specifications

2.1 Checking conformance with model-based specifications

Model-based specifications describe a system in terms of invariant properties,
pre- and postconditions. Some model-based languages, e.g. VDM and JML, have
an executable character. It is thus possible to use invariant assertions, as well
as pre- and postconditions as oracle for a conformance testing process. VDM
assertions can be evaluated in the VDMTools environment against the VDM
version of the specified code [6], or compiled into C++ [1]. JML specifications
are translated into Java, added to the code of the specified program, and checked
against it. The executable assertions are thus executed before, during and after
the execution of a given operation (Fig. 1).
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Fig. 1. Dynamic checks associated to operation execution
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One should note that the specification invariants are not exactly checked at
the same instants in JML and VDM. In VDM, invariants are evaluated after
each statement. In JML, invariants are properties that have to hold in all wisible
states. A visible state roughly corresponds to the initial and final states of any
method invocation [8].

When an operation is executed in one of those environments, three cases may
happen (Fig. 1):

— All checks succeed: the behavior of the operation conforms with the spec-
ification for these input values and initial state. The test delivers a PASS
verdict.

— An intermediate or final check fails: this reveals an inconsistency between
the behavior of the operation and its specification. The implementation does
not conform to the specification and the test delivers a FAIL verdict.

— An initial check fails: in this case, performing the whole test will not bring
useful information because it is performed outside the specified behavior.
This test delivers an INCONCLUSIVE verdict.

For example, +/z has a precondition that x has to be positive. Therefore, a
test of a square root method with —1 leads to an INCONCLUSIVE verdict.

2.2 A small example in VDM and JML

Let us study a simple example of buffer system (Fig. 2). This system is composed
of three buffers. The specification models only the number of elements present
in the buffers. A buffer is then modeled with an integer value, which indicates
the number of elements in it. The system state is given by the three variables
b1, b2 and b3.

The maximum size of the system is 40 elements. The system has to distribute
the elements amongst the buffers so that: buffer b1 is smaller than b2, which is
smaller than b3. The difference between b1 and b3 should not exceed 15 elements.
These constraints leave some freedom on the way to share the elements between
buffers. For example, 30 elements can be stored as b1=5 b2=10 b3=15 or as b1=8
b2=10 b3=12.

Three methods are set to modify the systems:

— Init resets all buffers to zero.

— Add(x) increases the total number of elements of the system of a strictly
positive number (x) (i.e. it adds x elements to the buffers; these elements
are distributed in b1, b2, and b3).

— Remove(x) decreases the total number of elements in the system of a strictly
positive number (x) (i.e. it removes x elements from the buffers).

The specifications of Add and Remove keep some implementation freedom: the
buffer in which the elements have to be added/removed is not set. For example,
if the current state is 8 10 12, and if 2 elements have to be added, the final
state could be 8 10 14,8 12 12 | but also 6 12 14.



—————————————————— VDM —~———————————————-
state buffers of

bl : nat

b2 : nat

b3 : nat

inv mk_buffers(bl,b2,b3) ==

b1+b2+b3<=40 and 0<=b1l and b1<=b2 and b2<=b3 and b3-bi1<=15
init B == B = mk_buffers(0,0,0)

end

operations

Init: () ==> ()

Init() == ...

post bl+b2+b3=0

Add: nat ==> ()

Add(x) == ...

pre x<=5 and b1+b2+b3+x<=40
post b1+b2+b3 = b1 +b27+b3 +x
Remove: nat ==> ()

Remove(x) == ...

pre x<=b and x<=b1+b2+b3

post b1+b2+b3 = b17+b27+b3"-x

—————————————————— JML ————————
public class Bufferq{

public int bi;

public int b2;

public int b3;

/*@ public invariant
0 bl+b2+b3<=40 && 0<=bl && b1<=b2 && b2<=b3 && b3-bi<=15; */

/*Q@ requires true;

@ modifies bl, b2, b3;

@ ensures bl==0 && b2==0 && b3==0; *x/
public Buffer () {}

/*@ requires true;

@ modifies bl, b2, b3;

@ ensures b1==0 && b2==0 && b3==0; */
public void Init(){...}

/*@ requires x<=5 &% b1+b2+b3+x<=40 &% x>=0;
@ modifies bl, b2, b3;
@ ensures b1+b2+b3==\0ld(b1+b2+b3)+x;

*/

public void Add(int x){...}

/*Q requires x<=5 && x<=b1+b2+b3 && x>=0;

@ modifies bl, b2, b3;

@ ensures bl1+b2+b3==\0ld(b1+b2+b3)-x; */
public void Remove(int x){...}

Fig. 2. Buffer example specification in VDM and JML



2.3 Test cases

We define a test case as a sequence of operation calls. For example, the following
test case initializes the buffer system, adds two elements and removes one of
them.

TC1 : Init() ; Add(2) ; Remove(1)

Each operation call may lead to a PASS, FAIL or INCONCLUSIVE verdict.
As soon as a FAIL or INCONCLUSIVE verdict happens, we choose to stop the
test case execution and mark it with this verdict. A test case that is carried out
completely receives a PASS verdict.

For example, in the context of the above specification, the test cases TC2
and TC3 should produce an INCONCLUSIVE verdict. If test TC4 is executed
against a “correct” implementation, it should produce a PASS.

TC2 : Init() ; Add(-1)
TC3 : Init() ; Add(2) ; Remove(3)
TC4 : Init() ; Add(3) ; Remove(2) ; Remove(1)

3 TOBIAS

TOBIAS is a test generator based on combinatorial testing [4]. Combinatorial
testing performs combinations of selected input parameters values for given op-
erations and given states. For example, a tool like JML-JUnit [3] generates test
cases which consist of a single call to a class constructor, followed by a sin-
gle call to one of the methods. Each test case corresponds to a combination of
the parameters of the constructor and a combination of the parameters of the
method.

3.1 Principles of TOBIAS

TOBIAS adapts combinatorial testing to the generation of sequences of operation
calls. This allows to reach states that do not correspond to a single call to a
constructor. It also allows to design tests in terms of behaviors rather than
states. For example, in the specification of the buffers, the initial state 1s fixed
(0 0 0), and it is not possible to add more than 5 elements at a time. Therefore
a rather long sequence is needed (at least 8 operations) to test the behavior of
the system at its limits (40 elements).

The input of TOBTAS is composed of a test pattern (also called test schema)
which defines a set of test cases. A pattern is a bounded regular expression
involving the operations of the VDM or JML specification. TOBIAS unfolds the
pattern into a set of sequences, and then computes all combinations of the input
parameters for all operations of the pattern.

The patterns may be expressed in terms of groups, which are structuring
facilities that associate a method, or a set of methods to typical values. For
example, let us consider schema S1:

Init() ; Add_Gr
with Add_Gr = {Add(z)|z € {1,2,3,4,5}}



Add_Gr is a set of b instantiations of calls to the method Add. The pattern S1 is
unfolded into 5 test sequences:

S1-TC1 : Init() ; Add(1)
S1-TC2 : Init() ; Add(2)

S1-TC5 : Init() ; Add(5)

Groups may also involve several operations. Let S2 and S2’ be two other
examples of schemas:

S2 = Init() ; Modify_Gr-{1..2}
S2’ = Init() ; Add(2) ; Modify_Gr~{1..2}
with Modify_Gr = {Add(z)|z € {1,2,3,4,5}} U {Remove(y)|y € {1,3,5}}

Modify_Gr is a set of (54+3)=8 instantiations. The expression ~{1..2} means
that the group is repeated 1 to 2 times. The patterns S2 and S2° are unfolded
into 84(8*8)=72 test sequences:

§2-TC1 : Init() ; Add(1)

S2-TC8 : Init() ; Remove(5)
$2-TC9 : Init() ; Add(1) ; Add(1)

S82-TC72 : Init() ; Remove(5) ; Remove(5)

$2’-TC1 : Init() ; Add(2); Add(1)

S$2°-TC72 : Init() ; Add(2); Remove(5) ; Remove(5)

Group definitions may be reused in several schemas, leading to some level of
modular construction.

3.2 Finding errors with Tobias

Let us consider the buffer problem specification. We have proposed an imple-
mentation, containing one error: the Remove operation can set one of the three
buffers to a negative value while keeping the total number of elements positive,
which is forbidden by the specification invariant. This solution was implemented
in VDM and Java. We executed the tests corresponding to the schemas S2, 527,
S3, and S4.

S3 = Init() ; Add(B)"7 ; Modify_Gr-{1..2}

S4 = Init() ; Add_Gr ; Modify_Gr~{1..3}

with Modify_Gr = {Add(z)|z € {1,2,3,4,5}} U {Remove(y)|y € {1,3,5}}
and Add_Gr = {Add(z)|z € {1,2,3,4,5}}

The schema S2’ was introduced in order to decrease the number of incon-
clusive verdicts of schema S2. The schema S3 aims at testing the behavior of



the application at the “limits”, i.e. when the buffer system is quite full. The
schema S4 was built to produce lots of test sequences (some kind of “brute force
approach”). The following table gives the verdicts of the various test cases.

| Schema | Test cases| Pass | Inconclusive | Fail|

S2 72| 39 331 0
S27 72| 48 22| 2
83 72| 57 15| 0
sS4 2920(1887 773|260

As expected, the error is detected (by schemas S2° and S4). S3 is aimed at
testing full buffers and can not reveal the error; S2 is a small test suite with a
lot of inconclusive test cases, which does not achieve enough exhaustiveness to
find the error.

This example shows that TOBIAS test suites are able to find errors. Here the
error was not straightforward, and small test suites such as S2 are not sufficient
to detect it (actually, the error may only happen if two Add operations have been
performed). Longer test sequences are needed, such as the ones generated by S4.

We have carried out several experiments with TOBIAS. In [12], we report on
a VDM case study. This case study showed that the development of a TOBIAS
test suite requires the same amount of effort as a simple manual test suite. It also
shows that since TOBIAS test suites achieve more exhaustiveness (by exercising
all combinationsin the schema), they reveal some errors that are often overlooked
by manual test suites.

3.3 Industrial case study

Two experiments were also carried out on an industrial case study provided by
Gemplus (a smart card manufacturer). The case study is a banking application
which deals with money transfers. It has been produced by Gemplus Research
Labs and is somehow representative of java applications connected to smart
cards. The application user (i.e. the customer) can consult his accounts and make
some money transfers from one account to another. The user can also record some
“transfer rules”, in order to schedule regular transfers. These transfer rules can
be either saving or spending rules.

The case study is actually a simplified version of an application already used
in the real world. The code length is 500 lines. The specification was given in
JML. Most preconditions are set to true. Since the application deals with money,
and since some users may have malicious behaviors, the application is expected
to have defensive mechanisms. Thus, it 1s supposed to accept any entry, but
it should return error messages or raise exceptions if the inputs are not those
expected for a nominal behavior. It is a typical example of defensive programming
style. This means that test cases do not produce INCONCLUSIVE verdicts.

Two testing experiments with TOBIAS were carried out from this case study.
The first one was carried out by a Gemplus team. They have first used their



internal testing methodology to elaborate an informal test plan. It includes 40
nominal “scenarios” (a scenario is an informal description of a test case). Tt
was possible to abstract those scenarios and express them with only 5 TOBIAS
schemas, which were unfolded into 1900 executable test cases. This experiment
shows that TOBIAS schemas are more compact than test cases. Moreover, by
abstracting test cases into schemas, we ended up with more general schemas
than the original scenarios, resulting into 50 times more test cases.

This experiment was considered as a success by our industrial partner. On
the one hand, TOBIAS schemas were perceived as an interesting structuring
mechanism for the design of tests. On the other hand, the tool allows to complete
the original test suites by achieving some kind of exhaustiveness.

The second experiment was carried out by our research team. From the in-
formal requirements, we deduced 17 TOBIAS schemas, mainly to simulate ma-
licious behaviors. They were unfolded into 1100 test sequences, representing 40
000 Java code lines (for JUnit). Tt took 6 person-day to analyze the specification,
produce the abstract scenarios, execute the tests and analyze the traces. (The
test suite execution time by itself takes only 1 hour.) The execution of the test
cases revealed 16 errors, in either the Java code or in the corresponding JML
specification. A discussion with the Gemplus team after the experiment showed
that we discovered most of the errors in the code. The only remaining error was
impossible to detect because the JML specification did not address this feature
of the system.

3.4 Conclusion

TOBIAS is a combinatorial tool that instantiates a large set of test sequences
from an abstract description. It aims to be a simple and easy to use tool for
combinatorial testing which supports and amplifies the creative work of a test
engineer. The tool can also be used in order to express existing test sequences
in a more abstract way, which helps the test engineer to structure his test suite.
Several experiments have shown that it is well-suited for a conformance test-
ing activity, in conjunction with executable model-based specification. These
experiments include both research and industrial case studies. In all these case
studies, the tool allowed to detect errors in the implementation under test.

4 Handling large test suites

The major strength of TOBIAS is also its main weakness. The combinatorial
approach allows to produce large test suites, whose systematic character helps
to detect errors. But the size of the test suite may also become a problem when
too many resources are needed to run the tests and analyze their results. The
first way to avoid combinatorial explosion is to design test schemas with great
care. By avoiding useless calls in the schema and by keeping the possible values of
a parameter to a minimum, we were able to control the number of generated test



cases in the experiments we led so far. Nevertheless, two additional mechanisms
have proved to be useful to reduce the amount of tests. They filter the set of
test cases either at execution or at generation time.

The typical size of a TOBIAS test suite ranges from hundreds to thousands
of tests. Today, the largest test suite generated by the tool counts about 40
000 test cases. Several experiments have shown that such test suites include a
large number of inconclusive test cases. For instance, schema S4 leads to 773
INCONCLUSIVE test cases. Although these are useful to test preconditions,
their execution may require a significant amount of time, and it makes sense to
try to eliminate some of them.

This section will discuss two techniques, based on predicates, that are used
to control or cope with the size of TOBIAS test suites.

— Filtering at the execution time: a test driver takes into account the results
of the oracle and filters out test cases with a prefix that has already failed
one of the checks.

— Filtering at the generation time: the test case generator can take into account
a predicate which filters out test cases whose input parameters do not fulfill
the predicate.

Test schema
Group definitions

TOBIAS

Test suite Test driver Test results
filter at

filter at execution
generation )
operation success
cals lerrors

VDM specification| .| VDMTools Test coverage
+ implementation (vdmde)

Fig. 3. Exploitation of TOBIAS generated tests in the VDM environment

4.1 Filtering at execution time

By construction, TOBIAS test suites are made up of similar test cases. One of
the possible similarities is that several test cases may share a common prefix.
For example, schema S2° includes 9 test cases which start with prefix init()
; Add(2) ; Remove(5).If the execution of the prefix is erroneous (or INCON-
CLUSIVE) for any of the 9 test cases, and if the implementation is deterministic,
the 8 remaining test cases will also exhibit an erroneous (or INCONCLUSIVE)
prefix. It is useless to execute the test cases with this prefix.

Therefore, we have developped test drivers that take this property into ac-
count. Every erroneous prefix is stored during the execution of the test suite.
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Before playing a new test case, 1t is compared to the stored erroneous prefixes
and discarded if it matches any of them.

The nice property of this filtering scheme is that it takes advantage of the
executable VDM /JML assertions (mainly preconditions) to help filter the test
suite. It does not require additional input from the user. Of course, this filtering
scheme is better suited to specifications that include strong preconditions. It will
not provide any benefit for specifications which adopt a defensive programming
style, with all preconditions set to true.

Buffer case study

The following table shows the execution time for the 4 test suites of the buffer
problem. The tests were executed on a Pentium I11/500MHz/128Mb linux ma-
chine.

VDM JML
Schema Test Pass Incon- Fail Exec. | Exec. Time E.xec. Exec. Time
cases clusive Time |with filtering || Time® |with filtering
S2 721 39 33 0 2 s. 1.205 s.|| 0.709 s. 0.134 s.
827 72| 48 22 2 2 s. 1.674 s.|| 0.524 s. 0.157 s.
S3 72| 57 15 0 6 s. 4.596 s.|| 0.400 s. 0.269 s.
sS4 2920(1887 773| 260||2min 05 s. 9.930 s.|| 14.307 s. 1.352 s.

The tests were executed with filtering and non-filtering test drivers. As ex-
pected, the optimized drivers execute the test suites quicker than the original
test drivers. The speed up is more important when there are many INCON-
CLUSIVE (or FAIL) verdicts. Both kinds of drivers reveal the implementation

€rror.

Banking application

The banking application is a typical example of defensive programming. The
preconditions of operations are usually set to true, in order to face all kinds
of unexpected inputs. With such applications, the test cases never end up with
an INCONCLUSIVE verdict. Therefore, filtering at execution time can only
take into account the prefixes which lead to a FAIL verdict. In the banking
application, this corresponds to a small number of tests (at most 1%). Hence,
filtering at execution time does not lead to a significant speed-up.

The following experiment was led to make sure that the filtering mechanism
did not slow down execution significantly when there are no INCONCLUSIVE
test cases. We have executed the tests with both JUnit and our driver for Java,
on a Pentium ITT/500MHz/128Mb Windows machine. This one has some limita-
tions. For instance, it is not possible to set several instantiations for a constructor
method in the same test suite (a test suite here is the set of test cases derived
from one schema). As a result, some the test suites were not executable with our

2 With JML-Junit environment.
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driver. The following table shows the execution time for the tests. As it can be
noticed, the execution time with our driver is shorter than with JUnit.

Schema nb of tests|with Junit Wlt}.l our Speedup
driver
One account creation 162 0.671s.| 0.410 s. 0.39
Several account creations 96| 0.401s.| 0.030s. 0.93
One account deletion 30| 0.160s.| 0.060 s. 0.63
Several account deletions 512 2.553 s.| 0.641 s. 0.75
Several transfers 1 0.050 s.| 0.060 s. -0.20
Incorrect transfer (1) 16| 0.251s.| 0.240 s. 0.04
Incorrect transfers (2) 60| 0.520s.| 0.601 s. -0.16
Incorrect transfers (3) 2|  0.040s.| 0.030 s. 0.25
Use of infinity values 12| 0.141s.| 0.110s. 0.22
12 digit numbers 4/ 0.070s.| 0.060 s. 0.14
Transfers and account deletion 12 0.140 s.| 0.080 s. 0.43
Transfer rules (1) 120 2.163s.| 2.204 s. -0.02
Transfer rules (2) 96| 1.733s.| 1.592s. 0.08
Transfer rules (3) 12|  0.341s.| 0.180 s. 0.47
Transfer rules (4) 8| 0.301s.| 0.110s. 0.63
Saving rule and account deletion 31 0.591s.| 0.050 s. 0.91
Spending rule and account deletion 31 0.711s.| 0.080 s. 0.87

Our experiments (the banking application and the buffers) show that our
test driver is faster than JUnit. There are several reasons:

— algorithmic reasons: when a large number of tests have the same prefix,
and when this prefix leads to a FAIL or an INCONCLUSIVE verdict, these
tests (which are amongs the longest of the test suite) are not executed with
our driver. For example, in the S4 schema, 760 tests are discarded, which
corresponds to a quater of the tests.

— technical reasons: JUnit has a generic character and uses introspection/re-
flection facilities to discover th tests stored in a class. Our test driver is
directly compiled from the test suite and does not have to find this infor-
mation. Moreover, we suspect that the graphical interface of JUnit (which
were used during our tests) also slows down the execution. The banking ex-
periment, which never leads to INCONCLUSIVE verdicts, shows that these
technical reasons alone result in significant speedups.

4.2 Filtering test cases at generation time

The previous section has shown that preconditions and other assertions could
filter a lot of INCONCLUSIVE test cases at execution time. TOBIAS provides
an other mechanism which allows to eliminate some test cases at generation
time, using a VDM predicate as a filter.

Let us consider again the schemas S2 to S4. A lot of the inconclusive verdicts
are due to the fact that the total number of removed elements is greater than the
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total number of added elements. One idea is to complete the schema definitions
with a constraint on the combination of parameters. Schema S2 was defined as:

S2 = Init() ; Modify_Gr-{1..2}
with Modify_Gr = {Add(z)|z € {1,2,3,4,5}} U {Remove(y)|y € {1,3,5}}

and unfolds into 72 test cases:

82-TC1 : Init() ; Add(1)

82-TC72 : Init() ; Remove(5) ; Remove(5)

Let add1 be the sequence of x parameters associated to each call to Add in
a given test case, and dell be the sequence of y parameters associated to each
call to Remove. For example, test case S2-TC1 corresponds to add1 = [1] and
dell = [], and test case S2-TC72 corresponds to add1l = [] and dell = [5,5].
The following VDM constraint expresses that the sum of the elements of add1
is greater than or equal to the sum of elements of del1.

S2_constraint : () ==> bool
S2_constraint () ==
dcl sommeAdd : nat:=0;
dcl sommeDel : nat:=0;
for a in addl do (sommeAdd:= sommeAdd+a;);
for d in dell do (sommeDel:= sommeDel+d;);
return (sommeAdd>=sommeDel) )

TOBIAS has been extended to generate sequences add1 and dell for each
unfolded test case, and then pass them to a VDM interpreter which evaluates
the constraint. Test cases which fail to verify the constraint are discarded from
the generated test suite.

With schema S2 and S2_constraint, the resulting test suite only features
48 test cases, among wich only 9 lead to INCONCLUSIVE verdict (instead of

This first example has shown that constraints can get rid of INCONCLUSIVE
tests at generation time. But this technique requires the test engineer to write
the constraint, while filtering at execution time took advantage of the existing
preconditions. Still, filtering at generation time is an interesting mechanism,

because constraints can be motivated by other concerns than simply ruling out
INCONCLUSIVE tests, as will be shown in the following example.

Application to the banking problem
It was already mentioned that the banking problem does not lead to INCON-
CLUSIVE verdicts. Still, constraints can be used in this case study to master
combinatorial explosion by adding further test hypotheses.

One of the 17 schemas i1s named “Several account deletions”. It is unfolded
into 512 test cases, which is actually the highest number of test cases in this
experiment. This schema 1s defined as follows:
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Create~{2..2}; Delete"{3..3}; CreateErr; Delete

where Create has only one instance, CreateErr has two instances and Delete
has four instances corresponding to four possible values of its only integer pa-
rameter. This schema is unfolded thus into 1*1*4*4*4*2*%4= 512 test cases.

In order to reduce this size, one may wish to express additional test hypothe-
ses. For example, Delete can be instantiated as Del1(10),Del(11), Del(12), or
Del(13). A first test hypothesis may be that the order of the first three instances
of Delete is not significant. Therefore the following test sequences are equivalent
for the tester:

Create; Create; Del(10); Del(11); Del(12); CreateErr; Del(10)
Create; Create; Del(12); Del(11); Del(10); CreateErr; Del(10)

Let dell be the sequence of parameters associated to the first three calls
to Delete, the following constraint expresses that only the sequence where the
parameters appear in ascending order will be kept:

forall vall, val2 in set inds dell &
vall<val2 => delil(vall)<=delil(val2)

Another test hypothesis (here a regularity hypothesis) is that it does not
make sense to try to delete the same account more than twice. This hypothesis
can be enforced if the four Delete calls refer to at least three different accounts.
Let del2 be the single element sequence corresponding to the fourth call to
Delete, this constraint can be expressed as:

card(elems(dell) union elems(del2))>=3
These hypotheses are then grouped into the following constraint.

Delete_C : () ==> bool
Delete_C () ==
return(
(forall vall, val2 in set inds dell &
vali<val2 => delil(vall)<=deli(val2))
and
card(elems(dell) union elems(del2))>=3
)

When TOBIAS takes this constraint into account, the number of unfolded
test cases is reduced from 512 to 80. From a test engineer point of view, this
reduction may be interesting since it results in a better balance of the whole test
suite. Thus this test schema no longer appears as the most significant one.
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5 Conclusion

This paper has presented TOBIAS, a test case generator based on the combina-
torial unfolding of test schemas. It has shown how the tool can be combined with
executable model-based specifications in a conformance testing process. TOBIAS
aims to be a simple and easy to use tool for combinatorial testing which supports
and amplifies the creative work of a test engineer. The tool has proved to be use-
ful to detect errors in several case studies, including an industrial experiment
where Java code was tested against a JML specification.

Other tools adopt a combinatorial testing approach in combination with
model-based specifications. Korat [2] and JML-JUnit [3] generate combinations
of a call to a constructor followed by a single call to one of the methods of the
class. Korat uses an elaborate generator to cover a wide range of calls to the
constructor. TOBIAS adds the possibility to express a sequence of method calls
in the test schema, allowing to reach states that cannot be created with the
constructor and to express tests on the basis of a behavior.

This paper has also presented filters that help master the size of the generated
test suites. Filtering at execution time is an interesting feature because it does
not require additional inputs from the test engineer. It allows to filter a significant
percentage of the tests for specifications with strong preconditions.

Filtering at generation time requires that the test engineers express some con-
straints on the schema parameters. But it is a more flexible filtering mechanism
and allows to translate test hypotheses into filtering constraints.

Perspectives Several improvements may be considered when filtering at genera-
tion time. On the one hand, several typical constraints could be added as prim-
itives of the schema language. For example, a variant of iteration of a method
could mandate parameter values to be all different, or to appear in ascending
order. On the other hand, a library of constraints could be developed to ex-
press frequently used testing constraints. Moreover, since constraints translate
test hypotheses, the library could be structured in terms of these higher level
concerns.

Still, improvements in filtering capabilities should not prevent the test en-
gineers from handling combinatorial explosion by a careful design of their test
schemas. Further methodological advances are needed to guide the elaboration
of test schemas. We expect that further experiments with TOBIAS with help us
to progress in that direction.
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