A case study in JML-based software validation

L. du Bousquet, Y. Ledru, O. Maury, C. Oriat
LSR-IMAG,
BP 72,
38402 St-Martin-d'Heres, France
{ldubousq, ledru, maury, oriat}@imag.fr

J.-L. Lanet
Gemplus Research Labs
La Vigie, av. du Jujubier,
13705, La Ciotat cedex, France
Jean-Louis.Lanet@gemplus.com

Abstract

This paper reports on a testing case study applied to a small Java application, partially
specified in JML. It illustrates that JML can easily be integrated with classical testing tools
based on combinatorial techniques and random generation. It also reveals difficulties to reuse,
in a testing context, JML annotations written for a proof process.

L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.-L. Lanet A case study in JML-based software
validation. In (short paper) Proceedings of 19th Int. IEEE Conf. on Automated Sofware Engineering
(ASE’04), pp. 294-297, IEEE CS Press, Linz, Sep. 2004

This material is presented to ensure timely dissemi nation of scholarly and
technical work. Copyright and all rights therein ar e retained by authors or
by other copyright holders. All persons copying thi s information are
expected to adhere to the terms and constraints inv oked by each author's
copyright. In most cases, these works may not be re posted without the

explicit permission of the copyright holder.

©2004 IEEE. Personal use of this material is permit ted. However, permission
to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to

servers or lists, or to reuse any copyrighted compo nent of this work in

other works must be obtained from the IEEE.

A Case Study in JIM L -based Softwar e Validation

Y. Ledru
LSR-IMAG,

BP 72,
38402 St-Martin-d’Heres, France

L. du Bousquet

{ldubousq, ledru, maury, oriat} @imag.fr

Abstract

This paper reports on a testing case study applied to a
small Java application, partially specified in JML. It illus-
trates that JML can easily be integrated with classical test-
ing tools based on combinatorial techniques and random
generation. It also reveals difficulties to reuse, in a testing
context, JML annotations written for a proof process.

1. Context and motivations

The automation of validation activities (test and proof)
often requires a model or specification of the system under
validation. Since the development of a model may be an ex-
pensive task, it makes sense to try to reuse the same model
in several development activities. This also ensures some
consistency between these phases. This paper reports on an
attempt to reuse a JML specification, developed for a proof
activity, during a testing phase.

JML (Java Modeling Language) is a behavioral interface
specification language that can be used to specify Java mod-
ules [3, 5]. JML annotations adopt a “design by contract”
style of specifications, which relies on three types of as-
sertions: class invariants, preconditions and postconditions.
Several kinds of validation tools [1] take advantage of JML
specifications: testing, static analyser and proof tools. From
a practitioner’s point of view, the syntax of JML, based on
Java, makes it easier to read and to write specifications.

In the past years, Gemplus has led several research
projects related to the formal development of smart card ap-
plications. Recently, Gemplus has adopted JML in research
projects dedicated to the proof of Java Card applications
[2]. Our case study started from a simplified banking ap-
plication, developed in Java. The application was partially
validated by Gemplus during a proof process which added
JML annotations. Several errors were found and corrected.
A second validation step, based on test, was carried out by

O. Maury C. Oriat

J.-L. Lanet
Gemplus Research Labs
La Vigie, av. du Jujubier,
13705, La Ciotat cedex, France
Jean-Louis.Lanet@gemplus.com

the LSR, with little visibility on the previous proof activ-
ity. In particular, the LSR team did not know which parts
of the requirements were not formally specified, and which
parts of the code and the specification were not proved auto-
matically®. This paper reports on this second validation step,
organised to experiment two of our testing tools, and to an-
swer the following questions:

1. Is JML, written for proof, easily reusable for test?

2. Is IML well-suited for validation by test?

2. Casestudy

The case study is a simplified version of a real banking
application which deals with money transfers. It was ini-
tially developed as a case study to validate the Jack prover
[2]. The application allows to create accounts, to consult
them and to make money transfers from one account to an-
other. “Transfer rules” (either saving or spending rules) can
be defined to schedule periodical transfers. The application
also allows to convert money from one currency to another.

The banking application code is composed of eight
classes: an account class, an account manager that cre-
ates and deletes accounts, a transfer class that defines
spending and saving rules to transfer money from an ac-
count to another according to different thresholds, a bal-
ance class that allows the customer to have access to his
accounts, a currency converter, and three classes dedi-
cated to of the transfer rule implementation.

This application has a total of 518 lines of Java, anno-
tated with 615 lines of JML (table 1). 362 of the 615 lines
of JML correspond to invariants, pre- and postconditions.
Postconditions (the ensures clause) represent most of the
JML assertions, especially in classes Account Man_src
and Bal ance_sr ¢ where they are dedicated to the spec-
ification of error codes. The remaining 253 lines of JML
correspond to loop invariants, to additional keywords such

1 Atthe time of this experiment, the Jack proof tool was still under de-
velopment, and some aspects of the specification, such as float num-
bers, were not yet covered.

3 nb. of lines of IML
£ [Bo
8 : Eg IS 0| »n
fd
Classes £ |8 |28 § =l E| S|
< < |SE S| o al 2| 8
2| 3|° ||E|e|&|3"
Transfer_src 116! 34| 7 5| 6]108 6150
AccountMan-src | 105| 51 8 [|17] 8] 9 7238
Currency_src 93l 20! 7 71 7] 6 7|98
Balance_src 64| 38 3 1] 2]37| 2|58
Spending_rule 40! 33 2 |120/13] 6] 1|42
Saving_rule 40| 33| 2 |120113] 4 1|4
Rule 2| 23| 5 3/ 6] 6 2|23
Account 30/ 20| 7 || 5/ 8] 9 7|as
Total 518| 251| 41 || 81| 63185| 33| 615

Table 1. Metrics in the Banking example

as the modifies clauses, or to comments. The fact that the
number of JML annotation lines is larger than the Java code
length is mainly due to the proof process.

3. Validation step

The main purpose of the work was to find some errors in
the code. To be more precise, we tried to find some incon-
sistencies between the code, the JIML assertions and the in-
formal requirements. Three cases can be identified.

e The JML assertions and the code are not consistent. It

is detected during the test, when a JML assertion is vi-
olated or when an unexpected exception is raised.

e The JML assertions are inconsistent with the informal
requirements but consistent with the Java code. Such
an error can only be detected thanks to a human anal-
ysis of the JML assertions or of the test executions.

e The JML assertions, the code and the informal re-
quirements are consistent with one another, but the ob-
served behavior reveals that some common sense re-
quirements have been overlooked.

Two LSR teams worked separately during 3 days, to pro-
duce some test data sequences and execute them.

3.1. Codereview and random testing

One team first carried out a code review and then used
a random testing approach, using the Jartege tool. Jartege
(Java Random Test Generator) [7] was developed by the
LSR. It enables random dynamic generation of unit tests
for Java classes specified in JML.

Random testing tool principles Jartege interacts with the
program under test and chooses randomly one of the meth-
ods whose precondition is true. The method is then executed
by the system under test, and Jartege proceeds iteratively to
build a large sequence of calls. The test sequences generated

by Jartege can be saved and replayed later. The random as-
pect of the tool can be parameterized in several ways, in or-
der to control and target the testing effort:

1. Some weights are associated with classes and opera-
tions by the user. Classes and operations are chosen by
Jartege according to these weights. In particular, it is
possible to forbid to call some operation by associat-
ing a null weight with it.

2. It is possible to control the number of instances of a
class with creation probability functions. This feature
permits either to create a few instances of a class and
make numerous method calls to these instances, or to
create many instances of this class.

3. Jartege allows to define generators for some primitive
parameter of a given method. This is particularly use-
ful for operations with a strong precondition.

4. Jartege allows one to write test fixtures, in a similar
way to JUnit [4], with setUp and tearDown methods.

Jartege is written in Java. It uses Java introspection to dis-
cover the available operations of each class under test. Each
generated call is executed in order to eliminate calls which
violate an entry precondition. Some Jartege classes have
been specified in JML, and tested with itself.

Results of the team The code review phase took one person-
day. and detected four errors. Those were corrected before
the random test phase. In its turn, the test phase allowed to
reveal five new errors or suspicious situations in one day.

3.2. Requirementsbased combinatorial testing

Approach The second team used a combinatorial testing
approach. First, some general properties from the require-
ments were identified. For example, the transfers must be
done if the money amount is correctly set, and if the ac-
counts exist and are different. Moreover, a transfer opera-
tion between two accounts must modify them as expressed
and must not modify other accounts (no side-effect).

Then, the test cases were derived from the properties. To
do that, some “abstract scenarios” were first expressed to
define sets of similar test cases. Thus, to test the previous
informal property, one should try to transfer some money
between (non)existing accounts, with (in)valid values. Ev-
ery time, the set of existing accounts should be consulted to
detect possible side-effects.

Combinatorial tool principles To express abstract scenar-
ios, the Tobias tool was used [6]. Tobias is a LSR tool de-
signed for combinatorial testing. It is used to instantiate the
abstract scenarios into executable test cases for JUnit. For
example, S1 (see below) performs a money transfer from
b1 to b2 with amount c. The transfer is followed by a bal-
ance check of account a. The tool will expand this abstract
scenario, producing all possible combinations of parame-
ters b1, b2, c and a. S1 will produce 320 test cases.

Scenario S2 was designed to test the currency converter.
The S2 expression defines three tests. They first set the cur-
rency to respectively FRF, EUR or CHF and then they dis-
play the value of 1 FRF into the chosen currency.

S1 = transfers.M1 ; balance.M2
S2 = currency.M3 ; currency.M4

M1 = {transfer(b1, b2, c)|b1,b2 € {1,2,3,100},
¢ € {100.0,99.9,1000,0, —2.1}
M2 = {getAccountsVector(a); getBalances(a) |
a€{0,1,2,3}}}
M3 = {setCurrency(f)|f € {FRF'/EUR’/ CHF'}}
M4 = {amountToDisplay(1.0)}

Tobias test schemas are one of the original points of the
tool. Unlike JML-JUnit which only issues a single method
call per test case, Tobias starts from a schema which cor-
responds to a sequence of method calls and generates the
combinations of all parameters and all methods of the
schema. This allows to use a combinatorial approach on
the basis of an abstract test case (the schema) which cor-
responds to a behaviour targeted by the test engineer.

Test schemas capture the knowledge of the test engi-
neer in a very compact and abstract form. From Gemplus
viewpoint, the ability to express very abstract test cases
(schemas) from which a large set of executable tests can
be automatically generated, was considered to be really in-
teresting. It is cheaper to write and to maintain; and the sys-
tematic unfolding of schemas may produce some test se-
quences that were not originally imagined.

Results of the team The team produced 17 abstract scenar-
ios (organized into 7 properties), which were instantiated
into 1241 test cases (40 000 Java code lines for JUnit). It
took 6 person-days to analyze the specification, produce the
abstract scenarios, execute the tests and analyze the traces.
16 errors or suspicious situations were discovered.

3.3. Found errorsor suspicious situations

At the end of both processes, 18 different errors or sus-
picious situations were uncovered?. We say that there is an
error when the JML assertion checker raises an exception.
We call suspicious situations the cases where formal spec-
ification and code have the same behavior, but do not cor-
respond to the informal requirements or to common sense.
The 18 errors can be classified as follows.

Floating-point approximations. 5 cases are related to the
floating-point approximations (err. 3, 4, 5, 6, 18). The float-
ing point type is used to represent the account balance. The
errors occur when the postcondition and the code compute

2 Errors 3, 10, 13 and 14 were fixed after the code review phase, to fa-

cilitate the random testing process.

team 1 team 2
Err| | réew | tesing || Tobias || Typeof error || (RGeS
1 X limit human oracle
2 X limit human oracle
3 X X floating-point coderev + JML or.
4 X X floating-point JML oracle
5 X X floating-point JML oracle
6 X X floating-point JML oracle
7 X postcondition JML oracle
8 X postcondition JML oracle
9 X X design JML oracle
10 X design code review
11 X limit human oracle
12 X limit human oracle
13 X X design coderev + Javaex.
14 X postcondition code review
15 X X several* Java exception
16 X counter-intuitive || human oracle
17 X counter-intuitive || human oracle
18 X floating-point human oracle

*precondition mistake, under specification, or design mistake

Table 2. Errors detected

the same “value” in differentways: (z+y)—z or z+(y—z).
The result is different because with float, + and - operations
are not commutative due to their limited precision®.

Limit. 4 cases are dealing with “limits” (err. 1, 2, 11 and
12). For example, a transfer rule can be registered with a
time period of 0, which is forbidden in the informal re-
quirements, but not in the JML specification. Also, one in-
formal requirement says that there is no limit amount for
a credit. So testers tried to credit one account with the Java
pre-defined constant POSITIVE_INFINITY. The fact that this
operation is accepted was judged as a suspicious situation.

Wrong postcondition. 3 cases are in the postconditions,
typically several \old arguments were forgotten. For in-
stance, err. 14 is due to an assertion indicating that the new
value of an attribute is equal to itself (a == a). The cor-
rect assertion is (e« == \old(a)), saying that the value of
the attribute has not been changed. This is a typical exam-
ple of error that can not be discovered with a black-box test-
ing approach, since the assertion is always true.

Design mistake. Three errors have been classified as design
mistakes. One critical attribute is public instead of private
(err. 10). It is possible to assign the same identifier to two
different accounts if two account managers are created (err.
9). The banking application deals with threads, but there is
no critical section to access an account (err 13).

3 During the proof process, the approximation problem was not tackled.

Counter-intuitive behavior. Two suspicious situations de-
note counter-intuitive behaviors. It is possible to delete an
account on which there are some active saving or spend-
ing transfer rules. This is neither specified informally nor
formally. Intuitively, one can imagine that the removal of an
account, which is a transfer destination may create some ac-
cess conflict if the rule is not deactivated before.

Several classifications. Error 15 falls into several cat-
egories. A method needs a parameter to be a string
representing a float. This is neither expressed in the infor-
mal requirements nor in JML assertions. This error can
thus be considered as a precondition inadequacy (the ex-
isting JML precondition does not indicate the parame-
ter form), under-specification (the informal specification
does not indicate the parameter form), or design mis-
take (the parameter could have been typed as float).

4. Conclusion

This paper has reported on a testing case study where
a JML specification, expressed during a partial proof pro-
cess was reused as a test oracle. 18 errors or suspicious sit-
uations were detected, 7 of them being revealed by the JML
mechanisms. The results of these testing experiments were
reported to Gemplus. It turns out that the errors we discov-
ered were either already known by Gemplus, or at least ex-
pected by them. For example, errors related to float numbers
had been consciously left out of their proof process. Actu-
ally, we only missed one error, which was difficult to detect
because it was not covered by the JIML specification.

Is IML well-suited for validation by test? This case study
exploited the executable character of JIML specifications to
use these as a test oracle. 1241 test cases were generated
by the Tobias tool. These definitely took advantage of using
the JML specification as a single centralized oracle. Using
this single oracle prevented us from scattering it in the JUnit
test cases, which requires to write a new piece of oracle for
each new test and to check that these elementary oracles are
mutually consistent. Moreover, the same JML oracle was
used by both teams with different testing tools (Jartege and
Tobias/JUnit). This single oracle approach may also bring
benefits in the maintenance of tests. If system evolution in-
cludes some regression, it is often needed to rewrite large
portions of the test suite. Using JML, specification changes
are immediately available in the oracle.

7 out of 18 errors were detected using JML, but many
other errors correspond to properties which could have been
expressed formally using JML. The case study has thus re-
vealed the incompleteness of the available formal specifi-
cation. We believe that JML has a good expressiveness to
cover most of the requirements of this application: 80 to
90% of the errors could have been detected if adequate JML
assertions had been available.

Is JML, written for proof, reusable for test? A specificity
of this study was that the JML specification came out of a
proof process led by our industrial partner. Several parts of
the specification were only expressed to help the proof pro-
cess. They are often too close to the Java code to help find
errors. But although these elements of the specification do
not contribute to the test oracle, they do no prejudice to the
testing process. They can even be useful for regression test-
ing, provided they are sufficiently abstract to express the
functionalities and not how they are implemented.

The main negative influence of these specification state-
ments is that they increase the size of the specification and
tend to give some confidence that the application is suffi-
ciently specified. In this perspective, automatic annotation
tools which simply propagate annotations or translate code
into annotations, will also lower the ratio of annotations use-
ful for the test in the overall specification.

Well-structured documentation of the JML assertions
may contribute to solve this problem. It is important to trace
where the annotations come from: are they the translation of
requirements or were they added to document the code?

As a conclusion, we believe that JML associated to sim-
ple automated tools provides an interesting framework for
the validation of Java applications at reasonable cost. But
it requires some discipline from the software engineers to
clearly distinguish between the portions of JML that were
added to support a proof process and those that express the
actual abstract specification of the application under test.

Acknowledgments This work was partially supported by the COTE project
(French RNTL). We would also like to thank Farid Ouabdesselam and
Jean-Luc Richier for comments on an early version of this work.

References

[1] L.Burdy, Y. Cheon, D.R. Cok, M. Ernst, J. Kiniry, G. T. Leav-
ens, K. R. M. Leino, and E. Poll. An Overview of JML Tools
and Applications. In FMICS 03, volume 80 of ENTCS pages
73-89. Elsevier, 2003.

[2] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness:
a developer-oriented approach. In the 12th International FME
Symposium, Pisa, Italy, September 2003.

[3] The Java Modeling Language (JML) Home Page.
http://www.cs.iastate.edu/ leavens/JML.html.

[4] JUnit. http://www.junit.org.

[5] G. Leavens, A. Baker, and C. Ruby. JML: A notation for
detailed design. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifi cations of Businesses and Systems.
Kluwer, 1999.

[6] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron. Filter-
ing TOBIAS combinatorial test suites. In Fundamental Ap-
proaches to Software Engineering (FASE’ 04), volume 2984
of LNCS Barcelona, 2004. Springer.

[7] C. Oriat. Jartege, a tool for random generation of unit tests for
Java classes. Technical Report RR1069, 2004.

