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Abstract

This paper reports on testing experiments applied to a
small Java application, partially specified in JML. These ex-
periments took advantage of the executable subset of JML
to act as an oracle for the testing process. JML played a
central role in the validation of this application. First the
JML specification was developed during a proof process.
Then the resulting specification acted as oracle in a sub-
sequent testing process. This paper reports on this second
step. It illustrates that JML can easily be integrated with
classical testing tools based on combinatorial techniques
and random generation. It also reveals difficulties to reuse,
in a testing context, formal JML annotations originally in-
tended to support a proof process.

1 Introduction

The automation of validation activities (test and proof)
often requires a model or specification of the system under
validation. In a classical waterfall process, such models are
developed in early activities, during requirements and spec-
ification phases. But the model can also be developed later,
when the validation activity actually takes place. From an
economical point of view, the development of a model may
be an expensive task and it makes sense to try to reuse the
same model in several development activities. This also en-
sures some consistency between these phases. This paper
reports on an experiment to reuse a JML specification, de-
veloped for a proof activity, during a testing phase.

The formal methods community has designed a wide va-
riety of executable specification languages. Recently, the
advent of the Java Modeling Language (JML) has provided
an interesting tool in the context of Java programs testing.
JML is a behavioral interface specification language that
can be used to specify Java modules [10, 12, 13]. From
a practitioner’s point of view, the syntax of JML, based on
Java, makes it easier to read and to write specifications.

This paper reports on a testing experiment carried out
during a cooperation between the LSR laboratory and Gem-
plus. In the past years, Gemplus has led several research
projects related to the formal development of smart card ap-
plications [4], mainly using the B method [1]. JML was
adopted in recent projects dedicated to the proof of Java
Card applications using the Jack tool [3].

Proving a piece of code guarantees its correctness with
respect to its formal specification, which may appear very
appealing in the context of critical applications. Unfortu-
nately, the undecidable character of their underlying logics
makes it impossible for theorem provers to automatically
discharge all proof obligations for a given program. In many
cases, 10 to 20% of the proofs must be carried out inter-
actively which may require significant efforts from skillful
engineers. Moreover, the proof only guarantees the confor-
mance of the code to the properties expressed in the spec-
ification. In many cases, the specification does not cover
the full requirements document. Requirements may be left
out of the specification, either because they are forgotten by
the specifiers, or because they are known to be difficult to
express or to prove. In this context, additional validation
activities, such as testing, must be undertaken.

Objectives of the Experiment The experiment reported
in this paper addressed the validation of a Java application
specified in JML. It is a simplified banking application, con-
sidered by the Gemplus researchers as representative of crit-
ical applications in the context of smart cards.

Fig. 2 summarizes the development process followed by
this application. Starting from a requirements document, a
java program was developed, using classical development
techniques. The program entered then a first validation step
based on proof techniques. This step led to the develop-
ment of a JML specification of the banking application, and
to the discovery and correction of several errors. This activ-
ity was carried out by Gemplus researchers, and is partially
reported in [3]. Actually, [3] reports that 5 of the 8 classes
of Fig. 1 were concerned by the proof process and that 944
of the 1055 proof obligations were proved automatically.
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Figure 1. Class diagram of the banking application

This paper reports on a subsequent validation step which
used the JML specification as an executable oracle, but also
took into account the requirements document. This second
validation step was carried out by the LSR team, with little
visibility on the previous proof activity. In particular, the
LSR team did not know which parts of the requirements
were not formally specified, and which parts of the code
and the specification were not proved automatically. Our
experiments tried to answer the following questions:

1. Is JML, written for proof, easily reusable for test?
2. Is JML well-suited for validation by test?

Moreover, this allowed us to experiment several testing
tools developed in our laboratory on an independently de-
veloped case study.

In this experiment, test data were produced by two dif-
ferent teams, using different techniques. The first one used
a code review and random testing. The second team used a
combinatorial testing approach. Each team worked during
a limited time period. We have then compared the num-
ber of errors found and analysed how the errors were found
(JML oracle or human critical analysis). These results were
reported to the Gemplus researchers.

The whole experiment shows that JML can be used as a
test oracle with several kinds of testing tools (here combi-
natorial and random testing tools). It reveals that JML an-
notations written for proof are not necessarily adapted to a
testing activity, and must be written with testability in mind
as a major concern. Although this experiment did use clas-
sical testing and validation techniques (random and combi-

natorial testing, code reviews), they turned out to be quite
efficient and were easily adapted to JML.

The paper is structured in 5 sections. Sect. 2 surveys the
application under test. Sect. 3 is a short overview of JML,
illustrated by the case study. Sect. 4 presents the testing
experiments. Sect. 5 tries to answer the questions of this
introduction and draws the conclusions of this work.

program
Java

corrected

JML + Java 

test process

document
requirements

partial proof
process

errors

errors

Figure 2. Validation process

2 Case study

The case study is a small banking application which
deals with money transfers. The application administrator
(the bank officer) can create accounts. The application user
(i.e. the customer) can consult his accounts and make some
money transfers from one account to another. The user can
also record some “transfer rules”, in order to schedule pe-
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riodical transfers. These transfer rules can be either saving
or spending rules. Moreover, the application includes some
features to convert money from one currency to another.

The case study is a simplified version of a real applica-
tion. This application is running on a central server, which
is linked to several smart card terminals. For the simplified
case study, the smart card terminals have been withdrawn.

The banking application code is composed of eight
classes (Fig. 1), among which:

� an account class,
� an account manager that creates and deletes accounts,
� a transfer class that defines spending and saving rules

to transfer money from an account to another accord-
ing to different thresholds,

� a balance class that allows the customer to have access
to his accounts,

� and the currency converter.

The three remaining classes are dedicated to the definition
of the transfer rule principles.

Some metrics of this application are given in Table 1.
The fact that the number of JML annotation lines is larger
than the Java code length is mainly due to the proof process.
Moreover, although the Gemplus researchers are quite used
to formal specification and proof, it was their first use of
JML for proof purposes.

3 JML: language and tools

3.1 The JML language

JML is a language designed to specify Java programs
by expressing formal properties and requirements on the
classes and their methods. The Java syntax of JML makes
it easier for Java programmers to read and write specifica-
tions. The core expression of the language is based on Java,
with some new keywords and logical constructions. For a
detailed JML description, see [10, 12].

Classes
Java
lines

JavaDoc
lines

JML
lines

Transfer src 116 34 150
AccountMan src 105 51 236
Currency src 93 20 28
Balance src 64 38 58
Spending rule 40 33 42
Saving rule 40 33 42
Rule 40 22 23
Account 30 20 36
Total 518 251 615

Table 1. Metrics of the banking application

1 /** Copyright (c) 2002 GEMPLUS group.
* All Rights Reserved.
*------------------------------------------
* Project name: COTE - Case Study -

5 * Version 1.0 1/9/2002
*-------------------------------------- */

package banking;

public class Currency_src {
10 private static final int EUR = 1;

//@ private invariant EUR == 1;
private static final float EUR_RATE=6.55957f;
//@ private invariant EUR_RATE == 6.55957f;
private static final int FRF = 2;

15 /*@ private invariant FRF == 2; @*/
private static final float FRF_RATE =1.0f;
/*@ private invariant FRF_RATE ==1.0f; @*/
private /*@ spec_public */ int CurCurrency;
/*@ private invariant (CurCurrency >=0

20 && CurCurrency <3); @*/

/*@ requires true;
@ exsures (Exception e) false; @*/
public String amountToDisplay(float amount){

25 float rate;
String toDisplay;
switch (CurCurrency) {

case (EUR) : rate = EUR_RATE; break;
case (FRF) : rate = FRF_RATE; break;

30 default : rate = 1;
}
toDisplay = (Double.toString

(Math.round((amount/rate)*100)/100));
System.out.println("aToD = " + toDisplay);

35 return Double.toString(toDisplay);
}

/*@ requires true;
@ modifies CurCurrency ;

40 @ ensures CurCurrency >= 0 ;
@ ensures CurCurrency == 0

|| CurCurrency == 1
|| CurCurrency == 2 ;

@ exsures (Exception e) false; @*/
45 public void setCurrency(String s) {

if (s == null) {CurCurrency = 0; return;}
if (s.compareToIgnoreCase("FRF")==0)

CurCurrency = FRF;
else if (s.compareToIgnoreCase("EUR")==0)

50 CurCurrency = EUR;
else {CurCurrency = 0;}

} }

Figure 3. Currency src class excerpt
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Let us illustrate the JML syntax on two parts of the
banking application. Fig. 3 describes a part of the Cur-
rency src class. Fig. 4 is a part of the JML specifi-
cation of the registerSpendingRule method of the
SpendingRule class.

In Fig. 3, for sake of brevity, we reduced the original
code to one dealing with only two currencies: French Franc
(FRF) and Euro (EUR). They are coded by a numeric code
(1 or 2). The 0 value is reserved to code undefined currency.
The changing rate between Franc and Euro is fixed (1 EUR
= 6.55957 FRF). The amountToDisplay method con-
verts a French Franc amount into a currency selected by the
user with the setCurrency method.

The JML specification appears as specialized Java com-
ments: between /*@ and @*/ or starting with //@. The
specification of a method precedes its interface declara-
tion, following the usual convention of Java tools such as
JavaDoc.

JML annotations adopt a “design by contract” style of
specifications, which relies on three types of assertions:
class invariants, preconditions and postconditions.

Invariants are properties that have to hold in all visible
states. A visible state roughly corresponds to the initial and
final states of any method invocation [10].

The invariant stated in Fig. 3 at lines 19-20, indicates
that the CurCurrency value should always be between 0 and
2. The two very simple invariants at lines 13 and 17 ex-
press that EUR RATE and FRF RATE will always stand
for 6.55957 and 1 respectively1.

Preconditions in the requires clause say which assertions
must hold before this method can be called. If that is not
true, then the method is under no obligation to fulfill the
rest of the specified behavior.

In our example, most preconditions are set to true (see
Fig. 3, lines 22 and 38). Since the application deals with
money, and since some users may have malicious behaviors,
the application is expected to have defensive mechanisms.
Thus, it is supposed to accept any entry, but it should return
error messages or raise exceptions if the inputs are not those
expected for a nominal behavior. It is a typical example of
defensive programming style.

Postconditions are expressed in the ensures clauses.
They express the results and the properties expected to hold
just after the method execution. For instance, the postcon-
dition of setCurrency (Fig. 3, lines 41 to 43) expresses
that the CurCurrency attribute value should be equal to
0, 1 or 2. This postcondition is another expression of the
invariant given on lines 19-20. The case study includes a
large variety of postconditions, ranging from true expres-
sions (cf. the postcondition of the amountToDisplay

1Since these variables were defined as “final”, these invariants were
typically designed for the proof phase.

1 /*@ requires true ;
@ ensures (threshold > 0 && period >= 0
&& account != spending_account
&& account >= 0 && spending_account >= 0

5 && (\exists int i; i >= 0 &&
i< accman.LocalVector.size() &&
((Account)(accman.LocalVector.

elementAt(i))).accountnum
== account)

10 && (\exists int i; i >= 0 &&
i< accman.LocalVector.size() &&
((Account)(accman.LocalVector.

elementAt(i))).accountnum
== spending_account))

15 ==>(\result == 0 &&
(rules.size()==(\old(rules.size())+1)));

@ ensures ...
@ exsures (Exception e) false; @*/
public int registerSpendingRule(String date,

20 int account, float threshold,
int spending_account, int period)

{ ... }

Figure 4. A complex JML annotation

method Fig. 3, line 23), to more complex ones, that contain
some state variables, may refer to the relation between the
final and the initial states (denoted by

�
old), and involve

quantified expressions over sets or vectors (see Fig. 4).

The exsures clauses are a special kind of postcondition
for exception specification. Fig. 3, line 23, the exsures
clause specifies that the amountToDisplay method
should never raise an exception.

JML extends the Java syntax with several keywords.
�
�
result (Fig. 4, line 15): Its value is the value re-

turned by the method. It can only be used in ensures
clauses of a non-void method.

�
�
old (Fig. 4, line 16): An expression of the form�
old(Expr) refers to the value that the expression Expr

had in the initial state of a method.
�
�
forall and

�
exists (Fig. 4, lines 5 and 10): They

are universal and existential quantifiers .

In the banking example, 362 of the 615 lines of JML
assertions are distributed as shown in Table 2. Postcondi-
tions (the �������	�
�
� clause) represent most of the JML asser-
tions, especially in classes AccountMan src and Bal-
ance src where they are dedicated to the specification of
error codes. The remaining 253 lines of JML correspond to
loop invariants, to additional keywords such as the modifies
clauses, or to comments.

3.2 JML associated tools

The JML release consists of several tools to check the
syntax and typing of specifications [2]. It also includes the
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jmlc tool, that uses the JML annotations to add runtime
assertions to the compiled java code [5]. JML assertions
are thus evaluated at execution time against the behaviour
of the program execution. If the assertion is not verified,
an exception is generated which reports the kind of asser-
tion which failed (invariant, pre- or postcondition). In most
cases2, such an assertion violation reveals a difference be-
tween the behaviour specified in JML assertions and the
code execution. The fault can be either in the specification
or in the program.

The code generated by jmlc can be used in combination
with JUnit [11] in a testing process. The JML-JUnit tool [6]
is a combinatorial testing tool which generates simple test
cases consisting of a single call to the methods of the ob-
ject under test. The tool generates combinations of selected
values of the method parameters to result in a large set of
test cases. The tool then exploits JUnit to run the tests and
jmlc to provide an executable oracle.

Several tools are available for formal proofs of Java
programs specified in JML. The LOOP tool [18] and the
JIVE environment [15] convert JML into PVS models. The
Krakatoa [15] tool translates JML into an internal language
from which proof obligation are expressed into Coq. Jack
is built on B [3].

Finally, the ESC/Java tool [8] is a lightweight tool that
aims at identifying (and correcting) errors early in the de-
velopment (static validation). It does not aim to provide a
formal proof of the code. For example, ESC/Java is efficient
to warn about potential null pointer usage.

2When a precondition evaluates to false due to a wrong choice of pa-
rameters by the tester, it does not reveal an error and leads to an inconclu-
sive test execution.

3.3 JML vs Java assertions

The assertion mechanism is a new feature of version
1.4 of the Java Programming Language. An assertion is
a boolean condition that can be evaluated at run-time. Op-
tions to the java compiler allow to turn the evaluation of
assertions on and off. Java assertions are a simpler mecha-
nism than JML:

� Java assertions are pure Java expressions and do not
benefit from the additional constructs of JML (e.g.�
old,

�
result,

�
forall and

�
exists).

� While JML features various kinds of assertions (invari-
ants, pre- and postconditions), Java assertions are of a
single kind. With JML, an invariant is written once
and executed after each method invocation. To obtain
a similar result with Java assertions, the invariant must
be copied at all places where it must be checked.

� The only tool supporting Java assertions is the Java
compiler, while JML is associated to several proof and
testing tools.

4 The validation experiment

The validation work aimed at evaluating how the existing
JML annotations, produced during a proof process, could
be exploited in a testing process. Gemplus provided the
informal requirements (in French), the JML annotations and
the source code. A test plan was also produced by Gemplus,
but not used in the experiments reported in this paper.

The main purpose of the LSR work was to find some
errors in the code. To be more precise, we tried to find some
inconsistencies between the code, the JML assertions and
the informal requirements. Three cases can be identified.

� The JML assertions and the code are not consistent.
It is detected during the test, when a JML assertion
is violated or when an unexpected Java exception is
raised.

� The JML assertions are inconsistent with the informal
requirements but consistent with the Java code. Such
an error can only be detected thanks to a human anal-
ysis of the JML assertions or of the test executions.

� The JML assertions, the code and the informal re-
quirements are consistent with one another, but the ob-
served behavior reveals that some common sense re-
quirements have been overlooked.

To do this work, the LSR researchers were divided into
two teams. Both teams worked separately in a bounded time
period (3 days). The first team made a critical code review
and then used random testing. The second team applied a
combinatorial testing approach based on requirements. A
human critical analysis of the execution results was per-
formed in parallel with the JML automatic decision. This
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helped us to find cases where the code and the JML specifi-
cation were consistent, but different from the requirements.

For both teams, the testing work consisted in producing
some test data sequences and executing them.

4.1 Code review and random testing
Approach The first team used a random testing approach
[7]. For that purpose, we have built a random test generator
for Java programs specified in JML.

Before the test generator was used, a code review was
carried out. A code review consists in reading the source
code (here the application code and the JML specification),
in order to find errors. When some errors were discovered,
test cases were manually written to illustrate them. Here,
the code review also helped to identify suspicious portions
of code where it made sense to target a more extensive test-
ing effort.

Random testing tool principles Jartege (Java Random
Test Generator) is a tool, developed in the LSR, which
enables random dynamic generation of unit tests for Java
classes specified in JML.

Jartege interacts with the program under test and chooses
randomly one of the methods whose precondition is true.
The method is then executed by the system under test, and
Jartege proceeds iteratively to build a large sequence of
calls. The test sequences generated by Jartege can be saved
and replayed later. The random aspect of the tool can be pa-
rameterized in several ways, in order to control and target
the testing effort:

1. Some weights are associated with classes and opera-
tions by the user. Classes and operations are chosen by
Jartege according to these weights. In particular, it is
possible to forbid to call some operation by associating
a null weight with it.

2. It is possible to control the number of instances of a
class with creation probability functions. This feature
permits either to create a few instances of a class and
make numerous method calls to these instances, or to
create many instances of this class.

3. Jartege provides the possibility to define generators for
some primitive parameter of a given method. This is
particularly useful for operations which have a strong
precondition.

4. Jartege allows one to write test fixtures, in a similar
way to JUnit, with setUp and tearDown methods.

Jartege is written in Java. It uses Java introspection
to discover the available operations of each class under
test. Each generated call is executed in order to eliminate
calls which violate an entry precondition. Some of Jartege
classes have been specified in JML, and tested with itself.

Results of the team The code review phase took one
person-day. It allowed to detect four errors. Those were

corrected before the random test phase. In its turn, the test
phase allowed to reveal five new errors or suspicious situa-
tions in one day.

4.2 Requirements based combinatorial testing
Approach First, some general properties from the re-
quirements were identified. For example, the transfers must
be done if the money amount is correctly set, and if the
accounts exist and are different. Moreover, a transfer oper-
ation between two accounts must modify them as expressed
and must not modify other accounts (no side-effect).

Then, the test cases were derived from the properties. To
do that, some “abstract scenarios” were first expressed to
define sets of similar test cases. Thus, to test the previous
informal property, one should try to transfer some money
between (non)existing accounts, with (in)valid values. Ev-
ery time, the set of existing accounts should be consulted to
detect possible side-effects.

Combinatorial tool principles To express abstract sce-
narios, the Tobias tool was used. Tobias is a LSR tool de-
signed for combinatorial testing. It is used to instantiate
the abstract scenarios into executable test cases for JUnit.
For example, S1 (Fig. 5) performs a money transfer from
b1 to b2 with amount c. The transfer is followed by a bal-
ance check of account a. The tool will expand this abstract
scenario, producing all possible combinations of parameters
b1, b2, c and a. S1 will produce 320 test cases.

Fig. 5 gives another scenario S2. It was designed to
test the currency converter. The S2 expression defines three
tests. They first set the currency to respectively FRF, EUR
or CHF and then they display the value of 1 FRF into the
chosen currency.

S1 = transfers.M1 ; balance.M2
S2 = currency.M3 ; currency.M4

with�������� �������

���
= �	��

����������
����������� !��"�#%$&���'���� )(*� � �,+��
-�� ��./.�0 �1 ()� �%.2.�3 . ��424 3 4�� �%./.2. � . ��56+ 3&�70� + = ��82����96",",:�;��<�=��><�,"��?:7
@�
�2#�A
8	����BC��DE�7�F",�G�	���	#H$I (*� . � � �
+��
- 020H0� - = �2�����
JK;�
G
����L"�MF�N�L#�$ OP()��Q&RKSTRKQU� Q%VXW6S6Q=� Q�YHZCR!Q 020�\[
= ����]^:�;��<�G_<:�`bac�UdFDE�7M<��� 3fe # 0

Figure 5. Two abstract scenarios for Tobias

Results of the team The team produced 17 abstract sce-
narios (which are organized into 7 properties), which were
instantiated into 1241 test cases. Those represented 40 000
Java code lines (for JUnit). It took 6 person-days to analyze
the specification, produce the abstract scenarios, execute the
tests and analyze the traces. 16 errors or suspicious situa-
tions were discovered.
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4.3 Found errors or suspicious situations

At the end of both processes, 18 different errors or sus-
picious situations were uncovered. We say that there is an
error when the JML assertion checker raises an exception.
Java exceptions also often reveal errors in the code3. We
call suspicious situations the cases where formal specifica-
tion and code have the same behavior, but do not correspond
to the informal requirements or to common sense.

The following table lists all errors, with their types and
the way they were discovered. Errors 3, 10, 13 and 14 were
fixed between code review and random testing, in order to
facilitate the random testing process.
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The 18 errors can be classified as follows.
� Floating-point approximations. There are 5 cases

related to the floating-point approximations (errors
3, 4, 5, 6, 18). The floating point type is used to
represent the account balance. The errors occur
when the postcondition and the code compute the
same “value” in different ways. For instance, in
SavingRule src class, the postcondition of the
check() method stands for

savingRef.balanceamount ==�
old(savingRef.balanceamount) 	�
old(accountRef.balanceamount) - threshold

and the code computation is
savingRef.balanceamount =

savingRef.balanceamount +
(accountRef.balanceamount - threshold)

3Then reveal a missing exsures clause.

The result is different because ��
�	�
�#�5�� is not equal
to 
�	 ��
 5��@# with 
 , 
 , � being float numbers. With
float, + and - operations are not commutative due to
their limited precision4.

� Limit. There are 4 cases that are dealing with “limits”
(err. 1, 2, 11 and 12). Let us see two examples.
A transfer rule can be registered with a time period of
0, which is forbidden in the informal requirements, but
not in the JML specification.
One informal requirement says that there is no limit
amount for a credit. So testers tried to credit one
account with the Java pre-defined constant POSI-
TIVE INFINITY. The fact that this operation is ac-
cepted was considered as a suspicious situation.

� Wrong postcondition. 3 cases are in the postcondi-
tions, typically several

�
old arguments were forgotten

(err. 7, 8, and 14). For instance, error 14 is due to an
assertion indicating that the new value of an attribute
is equal to itself ( I���� I ). The correct assertion is
( I���� � :�D���� I # ), saying that the value of the attribute
has not been changed5. This specification error is a
typical example of error that can not be discovered
with a black-box testing approach, since the assertion
is always true.

� Design mistake. Errors 9, 10, and 13 have been classi-
fied as design mistakes. One critical attribute is public
instead of private (err. 10). It is possible to assign the
same identifier to two different accounts if two account
managers are created (err. 9). The banking application
deals with threads, but there is no critical section to
access an account (err 13).

� Counter-intuitive behavior. Errors 16 and 17 de-
note counter-intuitive behaviors. It is possible to delete
an account on which there are some active saving or
spending transfer rules. This is neither specified infor-
mally nor formally. So, it is not possible to conclude
whether the application behavior is correct or not. In-
tuitively, one can imagine that the removal of an ac-
count, which is a transfer destination may create some
access conflict if the rule is not deactivated before.

� Several classifications. Error 15 falls into several cat-
egories. The method inputToAmount of the Cur-
rency src class needs a parameter to be a string rep-
resenting a float. Some test cases called this method
with a wrong parameter and resulted in Java run time
exception. This is not indicated in the informal re-
quirements and not expressed in the JML assertions.
This error can therefore be considered as a precondi-
tion inadequacy (the existing JML precondition does
not indicate the parameter form), under-specification

4During the proof process, the approximation problem was not tackled.
5This properties could also have been expressed with the JML keyword�

not modify.
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(the existing informal specification does not indicate
the parameter form), or design mistake (the parameter
could have been typed as float).

4.4 Code coverage

We still did not know whether all the errors of the bank-
ing application were found. Testing is always a process
which is difficult to end. To have some kind of feedback
about the quality of the testing suites, we have evaluated the
code coverage of the application.

One should note that during the test phase, the LSR had
no coverage tool for Java program testing. It is several
months after the end of the testing experience, that we have
installed JCoverage tool [9], and used it with the existing
random and combinatorial test suites. Here are the results.

Code statement coverage

Class
random
test suite

combinatorial
test suite

Account 87% 87%
AccountMan src 86% 91%
Balances src 77% 71%
Currency src 98% 88%
Rule 96% 96%
SavingRule 100% 100%
SpendingRule 100% 100%
Transfers src 86% 90%

This coverage analysis reveals that the test suites do not
cover 100% of the instructions. With the combinatorial ap-
proach, some cases were clearly forgotten by the testers.
For instance, the testers forgot to check transfer rules with
negative values.

But one could also notice that there is
� some dead code: several methods are defined as “pri-

vate” (and hence do not appear in the public interface
of their class) but are never called inside the class (e.g.
method getCurCurrency() in Currency src),

� one public method of class Transfers src which
is not declared in the informal specification (same
name than the declared one, but with different parame-
ters). Since Tobias scenarios were built from the infor-
mal specification, our test suite did not include calls to
this unspecified function.

4.5 Testability of the application

Testability is an evaluation of how effectively the soft-
ware can be tested. Intuitively, the higher the testability is,
the easier (or the cheaper) will be the testing phase. All as-
pects of a program may make it more difficult to test. This
can range from incomplete or ambiguous specification to
complex code. During this experiment, we have noticed
testability problems at four levels.

Informal requirements Some informal requirements
were not possible to validate. For example, the transfer rules
are applied with a periodicity defined by the user. It was
possible to check that the transfer rules were periodically
applied, but it was not possible to check that the effective
transfer operations were done at the time period indicated.
This real-time property could not be expressed in JML.

Incomplete JML specification The JML specification
stands for the oracle. If the JML postconditions or invari-
ants are under-specified, it is difficult for tests to detect au-
tomatically some errors.

For instance, when a saving rule with wrong parameters
is registered, an error code should be returned. These are
specified in the informal requirements, but they are not de-
scribed in JML (although it could be expressed). Thus, one
can not test whether an error with a wrong error code is pro-
duced. The error codes are specified with JML in all classes
but Transfers src.

Similarly, the amountToDisplay method of Cur-
rency src (Fig. 3) has no postcondition. Thus, during
this experiment, we could not possible to check automati-
cally that the displayed amount is correct (a human oracle
or an additional JML assertion is needed).

Influence of the code on JML In a classical waterfall
model, the specification is expected to be written before
coding. In this experiment, since the code was taken from
an existing application, JML assertions have been added af-
ter the coding phase. As a result, some postconditions may
have been influenced by the code. Actually, it is tempting to
simply copy-paste the code of the method in the JML asser-
tion and then to replace “=” with “==” and add some “

�
old”

keywords. Unfortunately, this often results in copying cod-
ing errors into the specification and prevents the detection of
errors by a proof or testing process. Therefore, care should
be taken to express postconditions in a different, and often
more abstract, way. This should also result in specifications
that are more robust to evolutions.

Code Some functionalities could have eased the banking
application testing. For instance, it is possible to register
transfer rules, but it is not easy to suspend or to delete them.
The notion of account exists, but there is no public method
to get the account objects.

4.6 Reporting errors to Gemplus

The results of these testing experiments were reported to
Gemplus. It turns out that the errors we discovered were
either already known by Gemplus, or at least expected by
them. For example, errors related to float numbers had been
consciously left out of their proof process. Actually, we
only missed one error, which was difficult to detect because
it was not covered by the JML specification.
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5 Conclusion

This paper reports on a testing experiment to validate a
small Java application (500 LoC). The starting point of our
work involved three documents: natural language require-
ments, JML specification and Java code. The Java code had
already undergone some level of proof with respect to the
JML specification.

Our validation activity was mainly based on testing,
complemented with a preliminary code review process.
Random testing and combinatorial testing were used to pro-
duce more than thousand test cases. These test cases took
advantage of the executable character of JML and used the
JML specification as an oracle. As a result, 18 errors or
suspicious cases were detected, 7 of them being revealed by
the JML mechanisms.

At the beginning of this paper, several questions were
asked. We may now try to answer them.

5.1 Is JML well-suited for validation by test?

The use of JML in a testing process corresponds to a
light-weight approach to formal methods. The choice of
JML by Gemplus is motivated, amongst others, by its Java
syntax. Experiments such as this one have shown that soft-
ware engineers quickly learn to read and eventually to write
JML specifications.

The experiment reported in this paper only addressed the
use of JML for testing. Testing is a classical software de-
velopment activity that is well integrated into development
processes. Since JML is easily integrated with popular tools
such as JUnit, we believe that a testing approach based on
JML is compatible with a wide variety of development pro-
cesses, ranging from classical waterfall life-cycles to ex-
treme programming practices.

JML as a test oracle This experiment exploited the exe-
cutable character of JML specifications to use it as an ora-
cle for the tests. 1241 test cases were generated by the To-
bias tool. These definitely took advantage of using the JML
specification as a single centralized oracle. Using this single
oracle prevented us from scattering it in the JUnit test cases,
which requires to write a new piece of oracle for each new
test and to make sure that these elementary oracles are mu-
tually consistent. Moreover, the same JML oracle was used
by both teams which used different testing tools (Jartege
and Tobias/JUnit).

This single oracle approach may also bring benefits in
the maintenance of tests. If the systems evolution includes
some regression, it is often needed to rewrite large portions
of the test suite. Using JML, specification changes are im-
mediately available in the oracle.

Expressiveness of JML 7 out of 18 errors were detected
using JML, but many other errors correspond to proper-

ties which could have been expressed formally using JML.
The experiment has thus revealed the incompleteness of the
available formal specification. The following table shows
which kinds of properties were actually detected using JML
and which ones could have been detected if the specification
was more complete.

Error type detected by detectable by
JML assertions JML assertions

limit No Yes
floating point Yes
postcondition Yes
design No 1 of the 3 errors
counter-intuitive No Yes

We believe that JML has a good expressiveness to cover
most of the requirements of this application: 80 to 90% of
the errors could have been detected if adequate JML asser-
tions had been available.

To be honest, the detection of floating point errors is due
to the fact that JML specifications and code are slightly dif-
ferent. This is unsufficient to detect all floating points er-
rors. A more adequate treatment of floating point opera-
tions requires to specify the expected precision of these op-
erations.

5.2 Is JML, written for proof, reusable for test?

A specificity of this experiment was that the JML specifi-
cation came out of a proof process led by our industrial part-
ner. Several parts of the specification were only expressed
to help the proof process. They are often too close to the
Java code to help find errors. But although these elements
of the specification do not contribute to the test oracle, they
do not arm the testing process. These elements of specifi-
cation can even be useful for regression testing, provided
they are sufficiently abstract to express the functionalities
and not how they are implemented.

The main negative influence of these specification state-
ments is that they increase the size of the specification and
tend to give some confidence that the application is suffi-
ciently specified. In this perspective, automatic annotation
tools [17] which simply propagate annotations or translate
code into annotations, will also lower the ratio of annota-
tions useful for the test in the overall specification.

Well-structured documentation of the JML assertions
may contribute to solve this problem. It is important to trace
where the annotations come from: are they the translation
of requirements or were they added to document the code?

As a conclusion, since JML annotations are motivated by
different concerns, it should be interesting to use structuring
mechanisms that identify them according to their rationale
and intended use.
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5.3 Jartege and Tobias

The testing phase made use of classical or simple test
techniques. From a methodological point of view, Tobias
tests were designed using the category and partition ap-
proach, which is a well known and efficient method [16].
Jartege is based on random testing, which turned out to be
a good way to find errors quickly and at low cost. Both
methods appeared complementary. On the one hand, ran-
dom testing is not very good at finding errors “at the lim-
its”, because the probability to reach such a boundary can
be very low. Such errors can easily be targeted by Tobias
test schemas. For example, in this experiment, several tests
were targeted to the use of pre-defined Java values such as
POSITIVE INFINITY or NEGATIVE INFINITY. On the
other hand, random testing may help to find errors corre-
sponding to unclassical scenarios, which are less likely to
be anticipated in a test plan.

Tobias test schemas are one of the original points of
the tool. Unlike JML-JUnit which only issues a single
method call per test case, Tobias starts from a schema which
corresponds to a sequence of method calls and generates
the combinations of all parameters and all methods of the
schema. This allows to use a combinatorial approach on
the basis of an abstract test case (the schema) which cor-
responds to a behaviour targeted by the test engineer. The
tool was able to find 16 out of the 18 errors. It was perceived
as a productivity amplifier which effectively helped writing
large sets of tests on the basis of test schemas adequately
designed by the test engineers.

Test schemas capture the knowledge of the test engineer
in a very compact and abstract form. For example, in an-
other experiment, the Gemplus researchers succeeded in ex-
pressing a test plan (of 50 test sequences) in 5 test schemas,
which were unfold into more than 2000 executable test
cases. From an industrial point of view, the ability to ex-
press very abstract test cases (schemas) from which a large
set of executable tests can be automatically generated, was
considered to be really interesting. First, it is cheaper to
write and to maintain a few abstract schemas than many ex-
ecutable tests. Second, the systematic unfolding of schemas
by Tobias may produce some test sequences that were not
originally imagined by the human tester. These advantages
have to be confirmed with other experiments.

Nevertheless, a classical drawback of the combinatorial
approach is combinatorial explosion. The Tobias tool and
a special purpose test driver have been build which exploit
the results of previously failed tests to avoid playing tests
which will eventually fail [14].

As a conclusion, we believe that JML associated to sim-
ple automated tools provides an interesting framework for
the validation of Java applications at reasonable cost. But

it requires some discipline from the software engineers to
clearly distinguish between the portions of JML that were
added to support a proof process and those that express the
actual abstract specification of the system under test.
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