
1 23

Innovations in Systems and
Software Engineering
A NASA Journal
 
ISSN 1614-5046
 
Innovations Syst Softw Eng
DOI 10.1007/s11334-011-0166-z

Combining UML, ASTD and B for the
formal specification of an access control
filter

J. Milhau, A. Idani, R. Laleau,
M. A. Labiadh, Y. Ledru & M. Frappier



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Limited. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Innovations Syst Softw Eng
DOI 10.1007/s11334-011-0166-z

SI : FM & UML

Combining UML, ASTD and B for the formal specification
of an access control filter

J. Milhau · A. Idani · R. Laleau · M. A. Labiadh ·
Y. Ledru · M. Frappier

Received: 30 April 2011 / Accepted: 1 September 2011
© Springer-Verlag London Limited 2011

Abstract Combination of formal and semi-formal methods
is more and more required to produce specifications that can
be, on the one hand, understood and thus validated by both
designers and users and, on the other hand, precise enough to
be verified by formal methods. This motivates our aim to use
these complementary paradigms in order to deal with secu-
rity aspects of information systems. This paper presents a
methodology to specify access control policies starting with
a set of graphical diagrams: UML for the functional model,
SecureUML for static access control and astd for dynamic
access control. These diagrams are then translated into a
set of B machines. Finally, we present the formal specifica-
tion of an access control filter that coordinates the different
kinds of access control rules and the specification of func-
tional operations. The goal of such B specifications is to
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rigorously check the access control policy of an information
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1 Introduction

Our aim is the formal specification of information systems
(IS) access control policies. Roughly speaking, an IS helps an
organization to collect and manipulate all its relevant data.
Access control is part of security issues that can grant or
deny the execution of actions depending on a policy. An
access control policy defines, for an authenticated user, which
actions he is allowed or forbidden to execute depending on
several criteria such as role, organization, etc. It is the com-
bination of atomic rules. Depending on the kind of rules an
access control designer wants to express, several languages
and notations can be used. In an access control policy speci-
fication, static and dynamic rules may be required in order to
express all access control requirements. In our work, we con-
sider static rules independently of the functional behavior of
the system. Permissions, prohibitions and static Separation
of Duty (SoD) are static constraints. A static SoD constraint
means that if a user is assigned to one role, he is prohib-
ited from being a member of a second role [6]. Dynamic
constraints require to take into account the history of the sys-
tem, that is the set of actions already performed on a system,
which is represented by the system state and its evolutions.
For instance, obligations and dynamic SoD are dynamic con-
straints. With dynamic SoD, users may be authorized for roles
that may conflict, but limitations are imposed, based on the
history of actions performed and roles taken by the user.

In our approach, we have chosen to use SecureUML [19]
to express static rules and the astd notation [8] for dynamic
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rules. These notations are presented in Sect. 3. These graph-
ical specifications are then translated into B machines [1]
using translation rules described in Sect. 4. Similarly, as we
need also to specify the functional model of the IS since
access control rules can refer to elements of this model, its
UML specification is translated into B. The next step consists
in specifying the access control filter that coordinates the dif-
ferent kinds of access control rules and the functional model.
The B specification of this filter is presented in Sect. 5. We
start in the next section by describing the context of the work.

2 Context

2.1 The Selkis project

The Selkis project1 funded by the French national research
agency (ANR) aims to define a development strategy for a
secure healthcare network IS from requirements engineering
to implementation. The results of this project can be applied
to any type of secure IS, but the medical field was chosen
because of the complexity and diversity of security require-
ments. An approach based on formal methods was chosen
in order to build implementations correct by design and to
perform proofs and model checking over rules that check
properties of the specification.

The approach adopted in the Selkis project advocates a
separation between the access control policy and the func-
tional model at the requirements, specification and imple-
mentation levels. An implementation of an access control
filter is produced. It intercepts actions before they are exe-
cuted. If the action and other parameters match access control
rules, the action can be executed by the IS. In the other case,
the execution is denied.

2.2 Illustrative example

In order to illustrate our approach, we consider an example
from a medical information system. The structural represen-
tation of this example is modeled by the UML class diagram
of Fig. 1. This diagram manages medical information about
patients in a hospital. Class MedicalRecord stores medical
information about a given patient, such as his medications,
using the attribute data. Every patient has at most one medi-
cal record which is not depending of hospitals. A doctor can
practice in at most one hospital and he can leave and join a
hospital using methods joinHospital and leaveHospital. The
information system imposes the following constraint:

C1 A patient cannot leave a hospital if his medical record
is not validated,

1 http://lacl.fr/Selkis/.

Fig. 1 Functional model

The access control policy associated to our example
includes the following rules:

R1 Doctors can read both public and private attributes of
a medical record but they can only modify public attri-
butes (i.e. data),

R2 Doctors can only validate medical records using the
validate method,

R3 Modification and validation of a medical record of a
given patient, can only be done by a doctor who does
belong to the same hospital as the patient,

R4 If a patient has left the hospital, only doctors belonging
to the hospital during the patient’s stay will keep read
access to his medical record.

R5 Any modification of a patient’s medical record must
be eventually validated. Several modifications can be
validated by a single validation.

Other rules exist in order to define the permissions to exe-
cute actions of classes Patient and Doctor but they are not
presented in this paper for the sake of concision.

3 Graphical models for access control

In our methodology we propose to use SecureUML [19]
to model static access control, and astd [8] diagrams for
dynamic access control. Static access control is based on
RBAC (Role-Based Access Control) [24], which describes
authorizations granted to users on resources. Dynamic access
control rules can refer to previous states of the IS.

3.1 SecureUML

SecureUML [19] is a graphical modeling language designed
to integrate information relevant to access control into
application models defined with the Unified Modeling
Language (UML). It extends a functional UML model using
concepts of role-based access control models (RBAC) in
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Fig. 2 Access control rules for medical records

order to model roles and their permissions. This is the main
reason why we have chosen SecureUML rather than UML-
Sec [13]. In SecureUML, users are grouped into roles and
may play several roles with respect to the secure system.
Figure 2 uses concepts of SecureUML to model rules R1 and
R2. It shows how medical records are secured when they are
accessed by doctors.

This SecureUML specification indicates that users with
role Doctor can read private and public attributes (denoted
by �EntityAction� privateRead), modify pub-
lic attributes (�EntityAction� Modify). This part
of the SecureUML specification models rule R1. Rule R2 is
modeled by the permission that allows doctors to execute the
method of the class MedicalRecord: Validate (�Metho-
dAction� Validate).

Rule R3 refers to an authorization constraint associated to
the permission to access a medical record and which links
the security and the functional parts of this model. It requires
(i) to navigate through the functional model to retrieve the
patient associated to the medical record, and his/her current
hospital, (ii) to retrieve the doctor corresponding to the user
asking to access the medical record and retrieve his/her asso-
ciated hospital, (iii) to compare these two hospitals. We can
add this constraint by annotating the graphical SecureUML
model. However, in order to keep Fig. 2 readable, rule R3 is
described using a B predicate in Sect. 4.3.

It would be more difficult to express rule R4 using
SecureUML, but not impossible. Rule R4 is of dynamic
nature because it is based on information about past states
of the system. Thus, in order to express it in SecureUML,
it would be necessary to add few artificial variables to the
functional model to store this kind of information. However,
for larger functional models which deal with real informa-
tion systems it becomes error prone to do so because these
variables will be less manageable. This kind of variables is
not needed when using the astd notation as it offers features
streamlining the specification of dynamic aspects. We think
that using a graphical notation that explicitly models states
and transitions between states is more intuitive than manu-

Fig. 3 astd model of rule R4: If a patient has left the hospital, only
doctors belonging to the hospital during the patients stay will keep read
access to his medical record

ally coding state variables that may introduce errors in the
specification. This approach of coding states into variables
is generally used in SecureUML, since it does not provide
operators to specify ordering constraints between actions.

3.2 The astd notation

The astd notation is a graphical representation having a for-
mal semantics. It was created to specify systems, in particular
IS. astd was introduced as an extension of Harel’s State-
charts [11] and is based on operators from eb3 [9] (a process
algebra dedicated to IS specifications). Readers are invited
to consult a formal and mathematical description of the astd
notation in [8].

In our IS hospital example, access control rule R4 is a
dynamic rule since it refers to several actions and defines
ordering constraints upon them. Hence this rule is modeled
using the astd notation as described in Fig. 3. The astd
uses a notation separating actions of the IS and its param-
eters from security parameters such as the user and his/her
role in the IS. It is denoted <−→s , a(

−→p )> where−→s is the list
of access control parameters (user and role in our example),
a is the action the user wants the IS to execute and −→p are
the functional parameters of the action. Since in our example
the combination of user and role is checked in the Secure-
UML model, there is no need to check it again in the astd
model. Some security parameters are wildcards (denoted _),
meaning that the specification accepts any values for these
parameters. However, if specific constraints upon security
parameters are required, they can be specified in the astd
for instance in the action MedicalRecord_GetData.

The first operator denoted � d : Doctor is a quantified
weak synchronization over all doctors of the system. There
are as many instances of the quantified astd as the num-
ber of instances of class Doctor. When an action is received,
all the instances of the astd that can execute it do so at
the same time. In other words, if there are instances of the
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Fig. 4 astd model of rule R5: Any modification of a patient’s med-
ical record must be eventually validated. Several modifications can be
validated by a single validation

astd that can synchronize, they have to do so. The quantified
choice operator | h : Hospital means that a single instance
h of class Hospital is associated to the instance d of Doc-
tor. This link is created by action JoinHospital( d, h ) when
a doctor is assigned to a hospital. The link between these
instances is removed when the doctor leaves the hospital with
the action LeaveHospital( d, h ). After leaving a hospital, a
doctor can join another one, starting a new link between d
and h. This iteration is possible thanks to the Kleene closure
operator (denoted by �), meaning that the sub-astd can be
iterated as many times as needed. Finally, astd named dp
describes the ordering constraint of action admission( p, h )
and action

< d, Doctor Role, MedicalRecord_GetData( i ) >

with i = Patient Medical Record Rel−1(p)

for all instances of the Patient class (due to operator quanti-
fied interleave �p : Patient). This action must be executed
by d, a user who has the role Doctor Role. It is guarded by
the predicate

h = Patient Hospital Rel(p)

in order to check that the hospital of the patient p and h, the
hospital where d works, are the same.

Similarly, we can model rule R5 that depicts an obligation.
After one or several modifications of a given medical record,
the record must be validated. Rule R5 is modeled in Fig. 4
using the astd notation. This astd describes the process for
all medical records, and this process can be repeated. This
is modeled using � I nstance : Medical Record and the
Kleene closure ∗. Then we have an automaton describing the
ordering of actions MedicalRecord_SetData and Medical-
Record_Validate. This automaton means that one or several
MedicalRecord_SetData can be executed and are eventually
followed by single MedicalRecord_Validate.

In OrBAC [4], the notion of context may be useful for some
dynamic constraints. Indeed, contexts allow to refine permis-
sions in order to give rights in specific circumstances (e.g.

emergency situations). They can govern periods of valid-
ity of privileges, or reduce/extend the access rights inher-
ited from a role. Especially, OrBAC proposes the notion of
provisional context [3] which depends on previous actions
the user has performed in the system. This assumes that the
information system manages a log that stores data about pre-
vious activities of users in the system. The OrBAC approach
requires then the effective implementation of the system. In
our approach, the advantage of astd models, compared with
OrBAC provisional contexts, is that they address the concep-
tual phases of a secure IS development process rather than
implementation or runtime.

4 Translations into B specifications

The idea of integrating formal and graphical notations (i.e. B
and UML) has been studied since several years [10], and was
commonly motivated by the complementarities of these two
types of notation. Indeed, the disadvantages of semi-formal
methods can be overcome thanks to contributions of formal
methods and vice versa. UML graphical views are synthetic,
structural and intuitive. However, their semantics are often
described as blurred. Therefore, the construction of systems
based on these methods can sometimes lead to ambiguous
models. On the other hand, the major strengths of formal
methods are precision of the abstract mathematical notations
and automatic reasoning.

In our approach, we propose to translate both SecureUML
and astd specifications into B in order to check the global
consistency of access control policies. Moreover we also
need the functional model since security rules can require
to read functional attributes values. Thus, the translation into
B is composed of three steps corresponding to the functional,
static access control and dynamic access control models.

4.1 The B method

The B method [1] is a method that supports a large segment
of the software development life cycle: specification, refine-
ment and implementation. It ensures, thanks to refinement
steps and proofs, that the code matches to the specification.
The B method is based on Abstract Machine Notation (AMN)
and the use of formally proved refinements. Its mathematical
basis is founded on first-order logic, integer arithmetic and set
theory. A B specification is structured into machines which
contain state variables, invariant properties expressed on the
variables and operations specified in the generalized substitu-
tion language, which is a generalization of Dijkstras’ guarded
command language. The refinement mechanism consists in
reformulating, by successive steps, the variables and the oper-
ations of an abstract machine, so as to finally lead to a module
which will constitute a running program. The intermediate
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steps of reformulation are called refinements and the last one
is the implementation.

4.2 A formal functional model

The initial functional model (Fig. 1) is a UML class dia-
gram showing entities and relationships. In order to formally
reason on this model, we propose to translate it into the B
notation.Translation from UML diagrams into B specifica-
tions was addressed by several research works [14,15,25].
In order to take advantage of these complementary works
we integrated their translation rules in a unified MDE frame-
work [12]. This allows, on the one hand, to combine and adapt
their rules, and on the other hand, to extend them in order to
take into account translations of UML extensions (i.e. Secur-
eUML). The translation of the functional model is strongly
inspired by these approaches. We do not use the UML-B
[26] framework of RODIN toolset because our objectives
are quite different. On the one hand, the RODIN toolset is
dedicated to the Event-B language and on the other hand the
UML-B [26] approach gives a UML syntax to B which does
not cover UML constructs that we need in our approach such
as composition or navigation.

Translation principles The functional model is translated
into a unique B machine containing sets, variables and associ-
ations derived from classes, attributes, and class relations. As
proposed by the existing approaches, class named Medical-
Record of Fig. 1 leads to an abstract set MEDICALRECORD
and a variable MedicalRecord representing respectively the
set of possible instances and the set of existing instances of
class MedicalRecord. Figure 5 illustrates basic B structures
related to class MedicalRecord.

Our MDE platform generates basic operations such as
constructors, destructors, getters, setters in order to allow
state evolution of the functional formal model. This step
takes into account some basic structural invariants related
to mandatory and/or unique attributes, inheritance, compo-
sition, multiplicities. . . An example of a basic getter which
allows to get medical record data is given in Fig. 6.

The operation returns a medical record data and informa-
tion about the success of its execution. This last point is useful
for the access control filter detailed later. From a functional
point of view, reading medical records data should always
succeed.

B specifications resulting from our translation process can
be enriched in order to take into account less obvious func-
tional constraints. Let us consider for example constraint C1
which means that if attribute isValid of a medical record is
false then the patient of this medical record must be linked
to some hospital. This can be expressed by the following
invariant:

Fig. 5 Basic B structures related to medical records

Fig. 6 Operation MedicalRecord__GetData

∀ pp · (pp ∈ Patient ∧
MedicalRecord__isValid(PatientMedicalRecordRel−1(pp)) = FALSE⇒
PatientHospitalRel[{pp}] 
= ∅ )

Contrary to operation MedicalRecord__GetData, the suc-
cess of operation MedicalRecord__SetData is constrained by
C1. In fact, this basic setter modifies attribute data of a Medi-
calRecord and also sets the attribute isValid to false. Figure 7
presents this B operation and shows how the previous invari-
ant is respected.

Failure of MedicalRecord__SetData indicates to the
access control filter that someone tried to modify data of
a medical record of a patient who is not admitted in any hos-
pital and that this action is forbidden by the functional part
of the model.

4.3 A formal static access control model

To our knowledge there is no attempt to translate Secure-
UML models into B. Nevertheless, in [23] the authors gave
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Fig. 7 Operation MedicalRecord__SetData

an Event-B specification for OrBAC policies which is mainly
dedicated to formally prove the process of deploying a secu-
rity policy. In our work, we mainly deal with the modeling
level of a security policy and its impact on the functional
model.

In order to translate the security part of our model, we pro-
pose a mapping which leads to structures that represent data
types. First, we propose a B formalization of a variant of the
SecureUML meta-model. Then, the security model elements
are directly injected in this B specification. For example, in
the following we give some enumerated sets issued from
Fig. 2.

SETS
ENTITIES = {MedicalRecord . . .};
ATTRIBUTES = {data . . .};
ACTIONS = {MedicalRecord__SetData . . .};
PERMISSIONS = {Doctor_Perm . . .};
ROLES = {DoctorRole . . .};
. . .

Invariants of the security formal model define various rela-
tions between these elements and also structural constraints
imposed by the meta-model. For example, permission assign-
ments and role hierarchy are defined by:

PermissionAssignement∈PERMISSIONS→ (ROLES×ENTITIES)

∧ Roles_Hierarchy ∈ ROLES←→ ROLES ∧
closure1(Roles_Hierarchy) ∩ id(ROLES) = ∅

This means that a permission links at the most one pair
(role �→ entity), and that Roles_Hierarchy has no cycle.
Invariants also include RBAC constraints such as the defi-
nition of SSD (Static Separation of Duty) which forbids a
user to take conflicting roles even in different sessions.

The initialization clause valuates the various relations
according to the SecureUML meta-model instance. This

Fig. 8 Operation secure_MedicalRecord__SetData

allows to check that the security model respects the structural
constraints of the SecureUML meta-model such as the non-
circular role hierarchy. A brief overview of the initialization
clause is given below:

INITIALISATION
AttributeOf := {(data �→MedicalRecord), . . .}
AttributeKind := {(data �→ public), . . .}
OperationOf := {(MedicalRecord__SetData �→MedicalRecord), . . .}
setterOf := {(MedicalRecord__SetData �→ data), . . .}
PermissionAssignement :=

{(Doctor_Perm �→ (DoctorRole �→MedicalRecord)), . . .}
EntityActions := {(Doctor_Perm �→ {privateRead, modify}), . . .}
. . .

Operations of the B specification derived from the security
model are dedicated to control access to the operational part
of the functional formal model. We associate to each func-
tional operation a secured operation in the security model
which verifies, based on the initial state, that a user has per-
mission to call the functional operation. For example, oper-
ation secure_MedicalRecord__SetData presented in Fig. 8
is intended to verify accesses to the functional operation
MedicalRecord__SetData of Fig. 7. Secured operations add
parameters user and role corresponding respectively to the
user who is trying to invoke the operation and one of his roles
(role ∈ roleOf(user)). Predicate “MedicalRecord__SetData
∈ isPermitted[{role}]” verifies whether operation Medical-
Record__setData is allowed to the connected user using a
particular role. Indeed, set isPermitted computes, from the
initial state, the set of authorized functional operations for
each role. For instance, it contains the couple (DoctorRole
�→MedicalRecord__SetData).

As mentioned in Sect. 3.1, rule R3 refers to a constraint
which is added to the SecureUML model using an annota-
tion linked to permission Doctor_Perm. It is expressed in
the B language as a precondition of modification actions
(�EntityAction� Modify).
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Fig. 9 Operation secure_MedicalRecord__GetData

This annotation is taken into account in the IF statement.
Then rule R3 is a predicate which conditions the granting of
the execution of action MedicalRecord__SetData (a setter of
the data attribute) and which means that the doctor must be
employed by the current hospital of the patient:

P(user,instance) =̂
(user ∈ Doctor⇒ HospitalDoctorRel(user) =

PatientHospitalRel(PatientMedicalRecordRel(instance)))

This constraint shows the impact of the functional model
on the access control model because the hospital in which the
patient is admitted and the hospital of the connected doctor
originate from the functional model. In the tool translating
SecureUML models into B machines, this kind of annota-
tion is taken into account and inserted with no modification
in the B operation. This requires that the designer expresses
the constraint as B statements. In SecureUML these con-
straints can be modeled using OCL; however, there is no tool
that can validate both static and functional models with such
constraints [16].

Figure 9 details the operation used in the rest of this paper:
secure_MedicalRecord__GetData. This operation is another
example of the translation of the SecureUML model into B.

4.4 Dynamic access control model translation

In [22] we have specified translation rules from astd to
Event-B. However, one goal of the Selkis project is to imple-
ment an access control filter for information systems. Thus,
we need the refinement process of the B method that leads to
a proved implementation. In order to do so, we have adapted
translation rules of [22] for B as described in [21]. This trans-
lation is made in three steps. The first step starts from the root
astd and goes down to the leaves: a variable is created for
each astd in order to encode its state. The second step creates
a B operation for each transition label. In this step, a set of
constant B functions is also created to encode the transitions
of all the automata. Each transition label of each automaton
has its own B transition function. Finally, the third step starts
from the leaves astd and goes up to the root astd. It mod-
ifies the B operations according to the semantics of the type
of each nested astd.

Fig. 10 Operation Dynamic_MedicalRecord__GetData

Figure 10 presents the B operation for the action Dynamic_
MedicalRecord__GetData. This action is affected by rule R4
described by the astd presented in Fig. 3. The B translation
of the astd generates several conditions that refer to the cur-
rent state of the IS. The first two conditions user ∈ Doctor
and role = Doctor Role ensure that the user willing to read
the medical record is currently a doctor and is connected with
the role Doctor Role. The third condition is the translation
of the guard on the action of the astd as presented in Fig. 3;
it ensures that joinHospital( d, h ) was executed, hence the
value of the hospital h for the doctor d has been recorded
by the system thanks to the StateQchoice function associ-
ated with the quantified choice operator of astd. The next
condition

StateAutomaton_Doctor Hospital(user) = dp

ensures that the doctor did not leave the hospital by checking
that the astd is still in the state dp, i.e. before the execution
of leaveHospital( d, h ). Finally, the last condition

StateAutomaton_dp(user, I nstance) = p1

ensures that the patient was indeed admitted in the hospital
after the doctor has joined the hospital. StateAutomaton_dp
and StateAutomaton_Doctor Hospital are partial func-
tions used to model respectively the state of the inner autom-
aton and the state of the upper automaton, in which dp is a
place. Complete description of these functions is provided in
[21].
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5 Specification of the access control filter

Once the different kinds of access control rules have been
specified, it is necessary to define how they are combined
and how the final decision of permitting the execution of an
action by a specific user is calculated. This is the role of
the access control filter. We use the B refinement process to
specify it. First an abstract B model is built and its refinement
allows the decision algorithm to be described.

5.1 Abstract access control filter specification

The abstract filter B machine is built by creating one B opera-
tion for each action to secure in the IS plus one for the rollback
of the system. The rollback operation (presented in Fig. 11) is
needed in the case where access control grants the execution
of one action that cannot be executed by the functional part of
the system. Hence, dynamic access control filter that depends
on the state of the IS must be restored to a state where the
action has not been executed. The other operations describe
inputs and outputs for the filter’s operations. An example
of these operations is presented in Fig. 11 with the filtered
version of the B operation Filter_MedicalRecord__GetDa-
ta. At this level of specification, we only describe the goal
of the operation i.e. granting or denying the execution of the
action. Substitution CHOICE is a non deterministic choice
between three substitutions. The algorithm that calculates

Fig. 11 Abstract operations Rollback and Filter_MedicalRecord__
GetData

which answer will be returned is detailed in the next step, the
refined filter specification.

5.2 Refinement of the access control filter

The abstract access control filter is refined into a more con-
crete filter that includes static, dynamic and functional mod-
els. The inclusion of these machines permits the execution
of operations from them. The refinement of these operations
introduces calls to static and dynamic access control opera-
tions; if the policy grants the execution, the functional oper-
ation is executed. Figure 12 presents the overall view of the
approach, with the graphical specifications translated into B
machines combined in an access control filter. The top layer
presents the different models expressed using graphical nota-
tions that are then translated into B machines. The second
part of Fig. 12 introduces the abstract access control policy
specification composed by all the translated B machines.

The access control policy designer has to specify the algo-
rithm that computes the answer of his/her policy. We call this
feature the decision algorithm. An acceptable decision algo-
rithm is to put static and dynamic filters in conjunction. This
means that both static and dynamic access control policies
must grant the execution in order for the filter to grant the
execution. In our example, we have chosen this solution, but
any other combination can be specified. We could imagine
another way to combine policies for our example: in the case
of emergency, the dynamic access control policy could be
replaced by a new one, more permissive, in order to reduce
constraints and improve efficiency of medical staff. Figure 13
is the refinement of operation Filter_MedicalRecord__Get-
Data introduced in Fig. 11 and describes the combining
algorithm for static and dynamic policies.

Rollback is an important part of our filter. Contrary to
the static access control specification that does not evolve
when executed, the dynamic access control specification is
based on a state that must be consistent with the state of the
IS. In the case where both static and dynamic policies grant

Fig. 12 Overall view of the access control filter
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Fig. 13 Refinement of Filter_MedicalRecord__GetData

the execution and that the execution fails at the functional
level, we have to restore the state of the dynamic policy to
its previous state. We do not detail the refinement of the roll-
back operation, but it consists in calling a B operation of the
dynamic access control B specification in order to restore
it to its previous state. However, this requires that the pre-
vious state was saved into variables before. In order to do
so, we have defined an operation called saveDynamicState
in the dynamic access control that will backup state variables
before any call to operations.

Such an access control filter can be implemented using the
BPEL language [2] and can be included in a service oriented
architecture (SOA) environment [5]. When IS are imple-
mented using Web services, like in SOA, security features
are often implemented in a Policy Enforcement Manager
(PEM). A PEM is based on two main parts: the Policy Deci-
sion Point (PDP) and the Policy Enforcement Point (PEP).
The PDP takes the decision to grant or deny the execution
based on several informations such as the policy and com-
bining algorithms. The PEP is the link between the PDP and
the functional IS. Our filter perfectly corresponds to a PEM
since it provides exactly the functionalities of both a PEP and
a PDP.

5.3 Verification and validation purpose

The various graphical diagrams are dedicated to a better
understanding of several aspects of an information system
and their corresponding formal models support a rigorous
reasoning about these aspects. For our case study, we proved
the machines and the refinement using Atelier-B prover. Val-
idation can be performed by animating the model. This con-
sists of playing several scenarios with the ProB [17] tool:

Normal scenario

– A secretary S of a hospital H creates a patient P, admits
him in the hospital and associates to him an empty med-
ical record;

– A doctor D joins the hospital H;
– The doctor D modifies attribute data of the medical record

of P and validates it;
– The patient P leaves the hospital H.

Attack scenarios

– A secretary trying to validate a medical record;
– A doctor trying to modify a medical record of a patient

who belongs to another hospital;
– A patient who leaves a hospital with a medical record

which is not validated.

It is also possible to verify properties against the whole
system, i.e. the combination of the filter, the access control
machines and the functional machine. We can verify that tem-
poral properties hold using model checkers such as ProB [17]
or using the proof-based verification approach developed by
Mammar et al. [20] and Frappier et al. [7]. For instance, we
could verify that rule R5 is correctly enforced by checking
that the CTL property

AG(¬ Medical Record_isV alid(i)⇒
AGEFpre(Medical Record_V alidate(i)))

holds against the specification of the filter. Indeed, the
predicate ¬ Medical Record_isV alid(i) means that i, an
instance of the MedicalRecord class, has been modified but
not yet validated. Informally, this property means that if an
instance of the MedicalRecord class has been modified but
not yet validated (predicate¬Medical Record_isV alid(i))
it is always possible to validate it. In other words, since we
want to ensure that after one or more modifications, the med-
ical record will be validated, then we want to check that on
all execution paths we can always find a path that eventually
leads to a state where the precondition of the B operation
Medical Record_V alidate(i) holds.
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6 Conclusion

In our work, we apply a combination of formal and graph-
ical techniques in order to propose a technique covering all
aspects of access control policies in the context of Informa-
tion Systems. Our methodology starts by various kinds of
graphical models and produces a complete formal B spec-
ification. We use UML class diagrams to model structural
functional models, SecureUML to express static access con-
trol rules and astd to represent history-based rules. In order
to remedy to the lack of tools for verifying or analyzing (for-
mally) these diagrams we translate them into B. Our work is
then intending to formalize access control policies in order to
reason on the derived formal specifications using associated
tools: AtelierB prover and ProB model checker and anima-
tor [17,18]. Another contribution of our approach is that it
becomes possible to design information systems as a whole
using graphical views for its functional and access control
aspects, and then generate a complete formal specification
for the whole system.

Works on OrBAC [4] propose procedures to analyze secu-
rity policies, however they do not take into account functional
models. Links between access control rules and the func-
tional specification cannot be formally checked. This is done
rather in the implementation or deployment steps. In [19],
authors have conducted an in-depth analysis of the literature
on research works that combine graphical and formal meth-
ods for designing IS, including both functional and access
control purposes. To our knowledge, the closest work to ours
is presented in [27], where functional and security models
are merged into a single UML model which is translated into
Alloy. However, the access control rules described in [27]
are mainly of static nature. Moreover Alloy proposes verifi-
cation techniques based on model-checking whereas B also
provides a theorem prover.

We are currently working on the tool implementing the
translation of astd into B. Further work includes the evalu-
ation of our approach on case studies of the Selkis Project.
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