
Taking into Account Functional Models in the

Validation of IS Security Policies

Yves Ledru1, Akram Idani1, Jérémy Milhau2,3, Nafees Qamar1,
Régine Laleau2, Jean-Luc Richier1, and Mohamed-Amine Labiadh1,�

1 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS, Laboratoire
d’Informatique de Grenoble UMR 5217, F-38041, Grenoble, France

Yves.Ledru@imag.fr
2 Université Paris-Est, LACL, IUT Sénart Fontainebleau,

Fontainebleau, France
laleau@u-pec.fr

3 GRIL, Département Informatique, Université de Sherbrooke,
Québec, Canada

Jeremy.Milhau@USherbrooke.ca

Abstract. Designing a security policy for an information system (IS) is
a non-trivial task. Variants of the RBAC model can be used to express
such policies as access-control rules associated to constraints. In this
paper, we advocate that currently available tools do not take sufficiently
into account the functional description of the application and its impact
on authorisation constraints and dynamic aspects of security. We suggest
to translate both security and functional models into a formal language,
such as B, whose analysis and animation tools will help validate a larger
set of security scenarios. We show how various kinds of constraints can
be expressed and animated in this context.

Keywords: RBAC, authorisation constraints, validation.

1 Introduction

The design of today’s information systems (IS) must not only take into ac-
count the expected functionalities of the system, but also various kinds of non-
functional requirements. Security is one of these non-functional requirements.
Security policies are designed to fulfill requirements such as confidentiality, in-
tegrity and availability. Security policies are usually expressed as abstract access
control rules, independently of target technologies. In the past, various access
control models have been proposed. In this paper, we focus on role-based access
control models (RBAC) [1], including evolutions such as SecureUML [2]. An
important feature of such models is the notion of role: permissions are granted
to roles which represent functions in an institution. Each role corresponds to
several users and users may play several roles with respect to the secure system.
� This work was partly supported by the ANR-08-SEGI-018 Selkis and ANR-09-SEGI-

014 TASCCC projects.

C. Salinesi and O. Pastor (Eds.): CAiSE 2011 Workshops, LNBIP 83, pp. 592–606, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Functional Models in the Validation of IS Security Policies 593

Advanced RBAC models allow to express constraints such as Separation of
Duty (SoD) properties [3], and other properties on roles (e.g. precedence, see
Sect. 2). For information systems, contextual information may also be taken into
account when granting permissions. This contextual information may correspond
to the current state of the information system, or to the history of interactions
with the system. This reveals the need to link the security model of the applica-
tion to the functional model of the information system, often expressed as UML
diagrams. Therefore, SecureUML [2] groups UML diagrams of the application
with security information describing the access control rules. In the remainder,
we will refer to the UML diagrams of the application as the functional model.
The term security model will refer to the access control model. Other approaches
have integrated security concerns in UML diagrams. Fernandez [4] proposes to
address security concerns through the whole software development and builds
on UML and patterns to structure his approach. UMLSec [5] is another UML
profile that focuses on secrecy and cryptographic protocols.

Contextual constraints give flexibility to describe security policies, but the
resulting models are more complex to validate. Validation checks that the policy
corresponds to the user’s requirements. Animation of the model can play a sig-
nificant role in this validation activity, playing scenarios or answering questions
about the consequences of the model. Animation also brings a limited level of
verification: traces demonstrate that constraints are not contradictory.

When systems become complex, separation of concerns is often perceived as
a good strategy to master complexity. In our context, this means that func-
tional and security models should be validated separately. This explains why
most existing works are mainly interested by the security part. Although it is
definitely useful to first analyse both models in isolation, interactions between
these models must also be taken into account. Such interactions result from the
fact that constraints expressed in the security model also refer to information of
the functional model. Hence, evolutions of the functional state will influence the
security behaviour. Conversely, security constraints can impact the functional
behaviour. For example, it is important to consider both security and func-
tional models in order to check liveness properties on the information system.
Indeed, it can be the case that security constraints are too strict and block the
system.

In this paper we review several tools aimed at the validation of RBAC security
properties, and state that most of them focus on the security model without
taking into account the functional model. We will then propose an approach,
based on the B method [6], which allows to express contextual and history based
constraints, and to validate these models using animation tools.

In Sect. 2, we review several tools representative of the current state of the art.
In Sect. 3, we present an example whose validation requires to take into account
dynamic aspects of the functional model. Such aspects cannot be investigated
with current tools. Sect. 4 proposes solutions based on the B formal method to
address these issues. Finally Sect. 5 draws the conclusions of this work.

594 Y. Ledru et al.

2 Tools for V&V of Role-Based Authorisation
Constraints

2.1 Validation Tools Based on OCL

OCL [7] (Object Constraint Language) is part of UML and allows to express
invariant constraints on a class diagram as well as pre- and postconditions on
the methods. The USE tool (UML-based Specification Environment) [8] takes as
input an object diagram and an OCL constraint. It checks whether the constraint
holds on the given object diagram. The tool also allows to program a random
generator for object diagrams, and to program sequences of object diagrams,
where pre- and post-conditions can be checked.

Sohr et al [9] have adapted this tool for the analysis of security policies. Their
work focuses on the security model, i.e. users, roles, sessions and permissions,
constrained by OCL assertions. This allows to express properties such as the
cardinality of a given role, the precedence between roles (e.g. only members
of role r1 may be assigned role r2), or SoD (i.e. conflicting roles). Their work
also takes into account a limited amount of functional information by adding
some attributes to the users. For example, if a constraint states that the doctor
accessing medical information about a patient must be linked to the hospital
of the patient, some attribute currentHospital should be added to the users.
Unfortunately such extensions of the security model don’t really scale up, and
duplicate information already included in the functional model.

Sohr et al [9] report on two kinds of validation activities. An object dia-
gram can be given to the tool, and the tool will check which constraints are
violated. The object diagram can be user-defined, randomly generated, or mem-
ber of a programmed sequence. This allows to detect unsatisfiable constraints,
i.e. constraints which are always false. They have also developed a tool named
authorisation editor, which implements the administrative, system and review
functions of the RBAC standard. The tool is connected to the API of USE so
that the constraints of the security policy are checked after each operation. This
allows to detect erroneous dynamic behaviour of the security policy. For exam-
ple, if two roles are constrained both by a precedence and a conflict relations, it
will always be impossible to find a sequence of RBAC administrative and system
operations which leads to create the second role.

Other works have addressed the validation of security policies using UML
and OCL. They focus on SoD properties in the security model. Ahn and Hu
[10] stated an approach using UML class diagrams, a language dedicated to
the specification of role-based authorization constraints (RCL2000), and OCL
to validate SoD constraints. In that approach, it is checked whether a current
state is violated by the authorization constraints. A snapshot based on object
diagram is created in order to determine violated constraints. Ray et al. [11] also
discuss SoD constraints by using object diagrams and try to alleviate the com-
plexity of OCL. The RBAC constraints that are checked are SoD, prerequisite
constraints and cardinality constraints that help imposing a maximum number
of role assignments to a user.

Functional Models in the Validation of IS Security Policies 595

2.2 RBAC Constraints and Alloy

Alloy Analyzer [12] emerged as a powerful and rigorous semantic based tool
that can be used for precise specification and modeling of a system. Using first
order logic, it offers a static structure of the models. Based on specified entities,
the set of instances generated by the Alloy analyzer are then checked against
the established constraints. The constructs of Alloy are similar to OCL and
compatible with it.

To our interest, Alloy should be used for behavioral or dynamic modeling in
terms of operations execution. Simulating a system using Alloy involves individ-
ual transitions or properties of sequences of transitions. However, use of Alloy
for dynamic modeling of security policies has been a scant subject so far. Most of
the proposed approaches merely focus on the static analysis where Alloy is used
for generating counterexamples against specifications. As an added advantage
of Alloy over other languages (e.g., OCL and UML), it is reported [13] as more
amenable to automatic analysis. Alloy offers two kinds of automated analysis
i.e., simulation and checking. In simulation, operations are interpreted to com-
pute resulting states, and check that they conform to invariant properties. In
checking, Alloy attempts to generate instances of a data structure up to a given
(small) maximum size, and can identify counterexamples which don’t satisfy a
given property. The types of answers that Alloy provides are: “this property al-
ways holds for problems up to size X” or “this property does not always hold,
and here is a counter example’.

Regarding the analysis of security models, especially RBAC with constraints,
significant amount of work has been carried out using Alloy, mainly based on
SoD constraints. Zao [14] has proposed a technique to verify algebraic charac-
teristics of RBAC schema using Alloy. Alloy is used as a constraint analyzer to
check inconsistencies among policies. The authors focus on static properties of
the security model and don’t take into account evolutions of its state. Schaad
et al., [15] and Ahn et al. [10] have discussed SoD constraints from RBAC. [15]
advocates the suitability of Alloy, and deeply discusses decentralized administra-
tion of RBAC and arbitrary changes to a initially stated model that may result
in conflicting policies over time w.r.t, SoD constraints. They argue that SoD
constraints may introduce implicit security policies flaws because of role hierar-
chies. Several counterexamples are generated to examine the policy which they
are interested in. Yu et al. [16] propose scenarios in terms of state transitions
to uncover violations in security policies. Such approaches and Alloy analyzer
(unlike model checkers) have advantages over model checking tools since model
checking merely considers closed-world view of systems [16]; that means no in-
puts are taken from external resources. In their approach, all operation calls take
the form of scenarios and a system state is a configuration of objects. Based on
a generated tree (limited depth, limited number of objects, and small domain)
of various invocations, scenarios are generated. Using this technique, one can
analyze role activation constraints and SoD constraints.

In [17], functional and security models are merged into a single UML model
which is translated into Alloy. Alloy can then be used to find a state which

596 Y. Ledru et al.

Fig. 1. Functional model enriched by security information (grey shaded classes)

breaks a given property. The properties described in [17] are mainly of static
nature, i.e. they focus on the search for a state which breaks a property, and
don’t search for sequences of actions leading to such a state. Nevertheless, Alloy
can take into account the behaviour of the actions of the model, and we believe
it has the potential to perform such dynamic analyses.

2.3 SecureMova

The tools presented so far, based on OCL and Alloy, only address the validation
of security models, e.g. addressing SoD properties. Most of them don’t consider
constraints which involve elements of the functional model, and hence don’t
consider evolutions of the state of the functional model.

In [18], Basin et al report on SecureMova, a tool which supports
SecureUML+ComponentUML. The tool allows to create a functional diagram,
i.e. a class diagram, and to relate it to permission rules. Constraints can be at-
tached to permissions and may refer to the elements of the functional diagram.

For example, this allows to express the property that doctors may modify a
medical record if and only if they are employed by the hospital of the patient.
A class Hospital may be defined in the functional model (Fig. 1) and relations
drawn between Hospital and Patient, and between Hospital and DoctorUser. In
Sect. 4.2, we will associate an OCL constraint to the permission to access a med-
ical record. This constraint navigates through the functional model to retrieve
the Patient associated to the medical record, and his/her current Hospital. It
also retrieves the DoctorUser corresponding to the user asking to access the
medical record and retrieves his/her associated Hospital. Finally, the constraint
compares these two hospitals.

With SecureMOVA it is possible to ask questions about a current state, i.e. a
given object diagram. Such queries return the actions authorized for a given role,
or a given user. They also allow to investigate on overlapping permissions, i.e.
permissions which have a common set of associated actions. The tool provides

Functional Models in the Validation of IS Security Policies 597

an extensive set of queries over a given model, possibly associated with a given
initial state. All reported examples [18] are of static nature, i.e. they don’t allow
to sequence actions (either administrative or functional) and check that a given
sequence is permitted by the combination of the security and functional models.
In the next sections, we will see that a thorough validation of a security policy
which includes contextual constraints must also take into account evolutions of
the state of the functional model.

3 Motivating Example

Our motivating example is based on the constraint stated above: “If a doctor
wants to modify the medical record of a given patient, he must belong to the
same hospital as the patient”. Let us now consider a malicious doctor, who wants
to modify the information of a patient in another hospital. Since the patient and
the doctor belong to different hospitals, the doctor will not be permitted to access
this information. In order to validate the rules of the security policy, one may
try several typical situations and query about the permitted/forbidden actions.
Using a tool such as SecureMova, one would provide an object diagram od1 with
one doctor and one patient linked to two different hospitals, and query if the
doctor may perform action setData on the patient’s medical record. The tool
would answer that the doctor is not authorized to perform this action.

Further validation of this security policy should explore dynamic aspects of
the policy. For example, is it possible for this malicious doctor to eventually
modify the patient’s information? Using only static tools, one can check that,
given an object diagram od2 where the malicious doctor belongs to the same
hospital as the patient, he will be granted this access. The next question to
investigate is: does there exist a sequence of actions which leads a malicious
doctor to belong to the same hospital as the patient? This requires to animate a
sequence of actions which leads from od1 to od2. Such a sequence will presumably
call an intermediate operation joinHospital which will link the malicious doctor
to the hospital of the patient. Here the dynamic analysis will allow to identify
these intermediate actions and check which role has permission to perform these
actions.

Another way to group the malicious doctor and the patient in the same hospi-
tal is to transfer the patient in the hospital of the doctor. In this second sequence,
one should investigate who has the permission to perform such a transfer.

This simple example shows that the validation of a security policy may require
dynamic analyses to identify sequences of actions leading to an unwanted state.
Moreover, these sequences of actions are not restricted to the standard RBAC
functions and may refer to operations defined in the functional model. This is
actually the case when constraints referring to the functional model are expressed
on permissions. Current tools, such as the ones presented in Sect. 2, which focus
on static queries or on the dynamic execution of the sole RBAC functions are
not sufficient to perform such dynamic investigations.

598 Y. Ledru et al.

4 Using Testing and Verification Techniques

The example of Sect. 3 shows that there is a need for dynamic analyses in-
volving both functional and security models when designing a security policy.
Moreover, when the security policy refers to the functional model through the use
of constraints, the dynamic analysis should not only cover the RBAC standard
functions, but also take into account the behaviour of the functional model.

Dynamic analyses can take two forms: tests and verifications. Tests correspond
to the execution of a sequence of actions on the security and functional models,
or on their implementations. The test sequence is either defined by the security
policy designer, possibly on the basis of use cases, or it may be the output
of a test generation tool on the basis of some coverage of the models. Test can
contribute to both validation and verification activities. Tests based on use cases
correspond to the validation activity because they contribute to show that the
security policy meets the users/customers needs. Tests based on model coverage
contribute to verification. They can check that the covered behaviours of the
model will respect some global properties of the security policy like SoD. Tests
also contribute to detect unsatisfiable constraints because such constraints may
forbid any state different from the empty state.

Tests can only check a limited number of behaviours. When absolute guar-
antees are needed, such as ensuring that all threats are handled, verification
techniques should be considered. Verification techniques include model-checking
and symbolic proof techniques. Both techniques are of interest in the verification
of a security policy. Proof techniques can show the existence of some state, and
hence prove that constraints are satisfiable, or establish that some property, like
SoD, is an invariant of the model. Model-checking is based on model exploration,
and can be used to find a sequence of actions leading to a given state or property.
In our motivating example, model-checking tools should be experimented to find
a path between od1 and od2.

4.1 Some Solutions to Explore

Testing techniques require the availability of executable models or implemen-
tations. Security policies based on RBAC can easily be made executable, as
demonstrated by Sohr in his authorisation editor [9]. Executability of a func-
tional model can be achieved in two ways: either by providing an implementation
of the model which can interface with the contextual constraints of the security
model, or by providing an executable model. Providing an implementation makes
sense in a context where the functional system is designed first, without con-
sidering security aspects, and where a security policy must be designed later
for this application. It also makes sense during a maintenance phase where a
given implemented security policy must evolve. Some prototypes of RBAC can
be coupled with an existing implementation. For example, the MotOrBAC tool
provides an API between its security engine and the application [19].

The other way is to get an executable functional model. In the case of USE
or SecureMova, the model is expressed as a class diagram combined with OCL

Functional Models in the Validation of IS Security Policies 599

Fig. 2. Analysis of the functional and security models

predicates. In order to turn UML methods into executable ones, one needs to
provide an implementation of the methods. Actually, USE allows to define a
body for each method using an imperative language based on OCL. It seems
that this feature was not explored in [9] and might be interesting to investigate.
Another way is to animate the methods based on their pre- and post-conditions.
We don’t know of tools which support this approach for OCL, but they exist for
formal languages such as B[6].

4.2 Using the B Formal Method

The B language actually appears as an interesting option. Several tools have
been defined to translate UML models into B specifications; they show at least
the feasibility of such translations [20,21]. Regarding the security model, Sohr[9]
has already shown that it can be specified in UML+OCL. Since the B language
is based on the same principles as OCL (first order predicate logic and set the-
ory), it is possible to propose a similar translation of the security model into B
specifications. The B specifications produced from both security and functional
models (Fig. 2) can then be analysed using either animation tools such as ProB
[22] or proof tools such as Atelier-B1. ProB also includes model-checking facilities
which can be of interest to search for malicious sequences of operations.

Fig. 2 illustrates the proposed translation of a functional model enriched by
an access control policy such as the one of Fig. 1. The functional B specifica-
tion in the left hand side of Fig. 2 is widely inspired by existing UML to B
translation approaches [20,21]. We developed a model driven platform [23] in
order to be able to combine and adapt rules proposed by these approaches. The
right hand side of Fig. 2 represents the formal specification produced from the
security model and which is intended to control the use of the functional B
operations. Playing scenarios is done by animating the secured operations (e.g.
secReadMedicalRecord, secJoinHospital) which give access uniquely to the
authorized functional operations. This approach allows to validate the functional
model as well as the security policy. In fact, animation of an authorized oper-
ation evolves the state of the functional model and hence allows the analyst to
validate both models.
1 http://www.atelierb.eu

http://www.atelierb.eu

600 Y. Ledru et al.

Terms “shallow embedding” and “deep embedding” [24] are often used to de-
scribe a mapping between formalisms. The first notion means a direct translation
from a source model into a target model, while the second notion means that the
mapping leads to structures that represent data types. In the proposed approach
we adopt a shallow embedding approach when translating the functional model,
and a deep embedding approach for the security model. In the following we give
an overview of the translation principles.

Translation of the Functional Model. As proposed by the existing ap-
proaches which transform a UML model into a B specification [20,21] concepts
of a UML class diagram lead to sets, variables and relations in the B specifica-
tion. For example, class MedicalRecord of Fig. 1 leads to an abstract set MED-
ICALRECORD and a variable MedicalRecord representing respectively the set
of possible instances and the set of existing instances of class MedicalRecord.

MACHINE
Functional Model

SETS
MEDICALRECORD, PATIENT, . . .

VARIABLES
MedicalRecord, Patient, isValid, . . .

INVARIANT
MedicalRecord ⊆ MEDICALRECORD ∧
isValid ∈ MedicalRecord → bool
. . .

INITIALISATION
MedicalRecord := ∅
. . .

Basic operations such as constructors, destructors, getters, setters. . ., are au-
tomatically produced in order to allow state evolution of the functional for-
mal model. We developed a tool which generates all these basic operations and
takes into account some basic structural invariants related to mandatory and/or
unique attributes, inheritance, composition, multiplicities. . . The resulting B
specification can be enriched in order to take into account less obvious func-
tional constraints and also to add manually other functional operations such as
operation Validate of Fig. 1. Proof and animation tools can then be used in order
to analyse the correctness of the functional model independently from security
aspects. Let us consider for example a functional OCL constraint which indicates
that a patient can’t leave an hospital if his medical record is not validated:

context MedicalRecord inv MR Validation:
self.isValid = FALSE
implies self.Patient.currentHospital -> notEmpty()

In other words, this constraint considers that if attribute isValid of a medical
record is false then the patient of this medical record must be linked to some
hospital. This can be translated in B as follows:

∀p · (p ∈ Patient ∧ isV alid(PatientMedicalRecordRel−1(p)) = FALSE)
⇒ PatientHospitalRel[{p}]
= ∅

Functional Models in the Validation of IS Security Policies 601

Relations PatientMedicalRecordRel and PatientHospitalRel are issued re-
spectively from the association between class Patient and class MedicalRecord
and the association which links class Patient to class Hospital. Taking into ac-
count this invariant leads to improvements of the functional model. For example,
operation setData, which is a basic setter, modifies attribute data of a Medi-
calRecord, and also turns the attribute isValid into false. Hence, precondition of
operation setData must be enforced in order to avoid a violation of the previous
invariant when trying to modify data of a medical record of a patient who is not
admitted in any hospital.

setData(mr, dd)=̂
PRE

mr ∈ MedicalRecord ∧ dd ∈ TheData
∧ PatientMedicalRecordRel(mr) ∈ dom(PatientHospitalRel)

THEN
isValid(mr) := FALSE ||
data(mr) := dd

END;

Such validations are done using the AtelierB tool which allows to prove the
functional model consistency with its invariants.

Translation of the Security Model. Translation of the security model fol-
lows a deep embedding approach. Indeed, we propose a B formalization of a
variant of the secureUML meta-model [2]. Elements of a security model are then
directly injected in this B specification. The access to the operational part of
the functional formal model is controlled by the B specification issued from the
security model. As shown in Fig. 2, we associate to each functional operation a
secured operation in the security formal model which verifies that a user has per-
mission to call a functional operation. For example, operation secure setData
is intended to verify accesses to operation setData above.

secure setData(mr, data)=̂
PRE

mr ∈ MedicalRecord ∧ data ∈ TheData
THEN

SELECT
MedicalRecord setData ∈ isPermitted[currentRole]

THEN
setData(mr, data)

END
END;

Variable currentRole contains the set of roles activated by a user in a session.
Set isPermitted computes for each role the set of authorized functional oper-
ations. Then, the guard MedicalRecord setData ∈ isPermitted[currentRole]
verifies whether setData is allowed to the connected user using his active roles.
Fig. 1 grants to doctors the permission to call modify operations such as setData.
Hence, animation of secure setData shows that every doctor may modify med-
ical records. In Sect. 2.3, we considered an additional constraint saying that in
order to modify a medical record, the doctor must be employed by the current
hospital of the patient. This constraint can be expressed in OCL as follows:

602 Y. Ledru et al.

context Doctor Perm::Modify inv :
session.user.isTypeOf(DoctorUser) implies
session.user.Hospital = self.medicalRecord.Patient.currentHospital

As this constraint is expressed in the context of a modification permission
(i.e. Doctor Perm), then we take it into account in our formal specifications by
strengthening the guard of secure setData as follows:

MedicalRecord setData ∈ isPermitted[currentRole] ∧
(currentUser ∈ DoctorUser

⇒ HospitalDoctorRel(currentUser)
= PatientHospitalRel(PatientMedicalRecordRel(mr)))

Now, animation of secure setData will fail if the doctor and the patient are
linked to different hospitals. This constraint shows the impact of the functional
model on the security model because the guard of the secured operation navigates
through the functional model state in order to retrieve and compare the hospital
in which the patient is admitted and the hospital of the connected doctor.

4.3 Support of History-Based Constraints

The constraints expressed in OCL only refer to a given instant of time. When
expressing history-based constraints, it is necessary to refer to several distinct
instants of time. For example, consider the following rule: “If a patient has left
the hospital, all doctors belonging to the hospital during the patient’s stay will
keep read access to his medical record.”. If we want to express this rule as a read
permission associated to an OCL constraint, we need to extend the functional
model with information about past states, and this information is for security’s
sake only. This goes against separation of concerns.

In [9], Sohr suggests the use of TOCL, an extension of OCL with temporal
operators. Although this provides a way to express history based constraints, it
appears that no tool is currently available to support the use of this formalism.

In the sequel, we address history-based constraints using process algebra and
the B method. Process algebra can be used to model workflows of actions and
all ordering and security constraints related to a dynamic security policy.

4.4 The astd Notation

In order to specify information systems, the eb3 [25] method was developed. It
features a process algebra similar to CSP [26] with some IS-oriented additions
such as quantifications. However, it lacks a graphical representation that can
help during the modeling process and that is one of the advantages of UML
statecharts. The astd notation [27] is a graphical representation linked to a
formal semantics created to specify systems such as IS. An astd (e.g. Fig. 3)
defines a set of traces of actions accepted by the system. astd was introduced
as an extension of Harel’s Statecharts [28] and is based on operators from eb3.
An astd is built from transitions, denoting action labels (i.e. method calls) and
parameters, and places that can be elementary (as states in automata theory) or

Functional Models in the Validation of IS Security Policies 603

Fig. 3. An astd rule expressing ordering constraints in an hospital IS

astd themselves. Each astd has a type associated to a formal semantics. One
of the main features of astd is to allow parameterized instances and quantifica-
tions, aspects missing in original statecharts. This means that astd can describe
not only the behavior of one instance but also the behavior of sets of entities
and relationships of a system. A formal description of the astd notation is given
in [29].

In the example of the hospital IS, astd can help modeling properties such as
“If a patient has left the hospital, all doctors belonging to the hospital during the
patient’s stay will keep read access to his medical record”. The astd of Fig. 3
expresses that for all doctors (� d : doctors), at a given time there is a unique
hospital where the doctor is affected (| h : hospitals). This hospital can change
during the doctor career (thanks to the ∗ operator). Once the doctor d joined
an hospital h, he can modify medical records of patient p if p was admitted in
hospital h and if he is one of his/her doctors. If p leaves the hospital, d can still
read his/her medical records, unless d leaves the hospital. At any time, d can
leave the hospital, loosing its reading rights over medical records.

4.5 Using astd to Validate a Policy

astd models are executable using the iastd [30], an interpreter for astd. iastd
efficiently determines if actions can be executed by the model and computes the
astd state after the execution. iastd accepts as inputs 2 files. The first one is
a description of the topology of the astd model to validate and the second one
is a trace of actions with their parameters to be executed. After parsing both
files, iastd computes the initial state of the astd and then tries to execute
the first action of the trace. If the execution succeeds, iastd computes the new
state of the astd and goes on to the next action of the trace to be executed.
If the execution is not allowed, iastd does not modify the current state of the
astd and warns the user of refusal of the action. iastd then tries to execute the
next action in the trace. Validation of an astd is thus performed by providing
scenarios (traces) that should be accepted and others that should be rejected.
Such scenarios can be generated in order to check usual access-control policy
properties or requirements.

604 Y. Ledru et al.

In the example presented in Fig. 3, we would like to grant doctors linked a
given hospital the right to read medical records of patients only if they
were linked to this hospital during the patient stay. We can validate our
policy by executing some scenarios over the model. Executing the trace
{ joinHospital(Alex, H1) ; admission(Bob, H1) ; discharge(Bob, H1) ;
readMR(Alex, Bob, H1) } will check that a doctor linked to hospital H1 can
read the record of a patient linked to the same hospital in the same time interval.
With another scenario such as { joinHospital(Alex, H1) ; admission(Bob, H1) ;
discharge(Bob, H1) ; leaveHospital(Alex, H1) ; readMR(Alex, Bob, H1) }, the
interpreter will reject the last action because Alex is not linked to the hospi-
tal at the time he attempts to read the medical record. However the scenario {
admission(Bob, H1) ; joinHospital(Alex, H1) ; discharge(Bob, H1) ;
readMR(Alex, Bob, H1) } should be accepted by our policy, but will be rejected
by iastd since Alex joined the hospital after the admission of Bob. Our security
policy is hence too strict and should be adapted in order to accept this scenario.
This example shows how to use iastd and use case scenarios in order to validate
astd specifications which define history-based constraints on security policies.

4.6 Putting It All Together

In Sect. 4.2, we propose a set of rules to produce B specifications from both the
functional part of the system and the static access control model. Translation
rules from astd models into event-B have also been defined in [31]. Hence, the
proposed methodology for modeling IS security starts from a set of graphical
models: (i) a class diagram for the functional model, (ii) a static security policy
linked to the class diagram and (iii) astd models describing a set of allowed
traces of actions. These graphical models are used for specifying, visualizing,
understanding and documenting a security policy. In order to rigorously check
their correctness, a formal B specification can be derived. Thus, a functional
model and its associated access control policy, including both static and dynamic
aspects, are specified using the same formal notation. We extensively use the
inclusion mechanism of B to link secured operations with functional operations.
This allows the consistency of the whole system to be formally checked, activity
that can be assisted by the tools associated to the B method.

5 Conclusion

This paper has addressed the validation of security policies which include contex-
tual constraints refering to the functional model of an information system. These
are essential activities when designing or modifying a security policy. Separation
of concerns suggests to treat the functional and security models in isolation. Un-
fortunately, when constraints establish a link between these models, validation
activities must consider both security and functional models, because changes in
the state of the latter may grant or deny permissions in the former. In Sect. 2,
we have stated that most tools focus on the validation of the security model and
can’t take into account constraints which link it to the functional model. Only

Functional Models in the Validation of IS Security Policies 605

a few tools, like SecureMova, take both models into account, but their analyses
are of static nature, and don’t support evolutions of the state of the functional
model. In Sect. 3, a motivating example has illustrated the need for dynamic
analyses which take into account both models. Our example includes properties
whose context is either the current functional state, or the history of this state.

We have proposed an approach, based on the B method and astd, where
such contextual constraints may be expressed, and included in a formal model.
This model can be animated with user defined scenarios and the constraints are
evaluated during this animation. The scenarios are defined during requirements
analysis, and can be shown to the customer, contributing to the validation of
both functional and security models. Playing these scenarios may reveal that
the security policy is too strict and forbids normal behaviours. Scenarios may
also correspond to potential attacks, and help evaluate the capabilities of the
security policy to detect and prevent such attacks.

Our current work implements the tools associated to this approach and studies
the interactions between state-based and history-based constraints. This toolset
will then be evaluated on case studies of the ANR Selkis Project2.

References

1. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Com-
puter Security Series. Artech House, Boston (2003)

2. Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML mod-
els to access control infrastructures. ACM Transaction of Software Engineering
Methodology 15(1), 39–91 (2006)

3. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: IEEE Symposium on Security and Privacy, pp. 184–195 (1987)

4. Fernández, E.B.: A methodology for secure software design. In: Proc. of the Int.
Conf. on Software Engineering Research and Practice, SERP 2004, pp. 130–136.
CSREA Press (2004)

5. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004)
6. Abrial, J.: The B-Book. Cambridge University Press, Cambridge (1996)
7. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling

With UML. Addison-Wesley, London (1998)
8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-

ment for validating UML and OCL. Sci. Comput. Program. 69(1-3), 27–34 (2007)
9. Sohr, K., Drouineaud, M., Ahn, G.J., Gogolla, M.: Analyzing and managing role-

based access control policies. IEEE Trans. Knowl. Data Eng. 20(7), 924–939 (2008)
10. Ahn, G., Hu, H.: Towards realizing a formal RBAC model in real systems. In: 12th

ACM Symp. on Access Control Models and Technologies. ACM Press, New York
(2007)

11. Ray, I., Li, N., France, R.: Using UML to visualize role-based access-control con-
straints. In: Proceedings of the 9th ACM Symposium on Access Control Models
and Technologies, pp. 115–124. ACM Press, New York (2004)

12. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

2 http://lacl.univ-paris12.fr/selkis/

http://lacl.univ-paris12.fr/selkis/

606 Y. Ledru et al.

13. Power, D., Slaymaker, M., Simpson, A.: On the modelling and analysis of amazon
web services access policies. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R.,
Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 394–394. Springer, Heidelberg
(2010)

14. Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC Schema Verification Using
Lightweight Formal Model and Constraint Analysis. In: Proceedings of 8th ACM
Symposium on Access Control Models and Technologies (2003)

15. Schaad, A., Moffett, J.D.: A lightweight approach to specification and analysis of
role-based access control extensions. In: Proc. of 7th SACMAT. ACM Press, New
York (2002)

16. Yu, L., France, R., Ray, I., Ghosh, S.: A Rigorous Approach to Uncovering Se-
curity Policy Violations in UML Designs. In: Int. Conf. on Engineering Complex
Computer Systems. IEEE, Los Alamitos (2009)

17. Toahchoodee, M., Ray, I., Anastasakis, K., Georg, G., Bordbar, B.: Ensuring spatio-
temporal access control for real-world applications. In: 14th ACM Symp. on Access
Control Models and Technologies, SACMAT 2009. ACM, New York (2009)

18. Basin, D.A., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information & Software Technology 51(5), 815–831 (2009)

19. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma-Brebel, C.: MotOrBAC 2:
a security policy tool. In: SARSSI 2008: 3e Conf. sur la Sécurité des Architectures
Réseaux et des Systèmes d’Information, (Télécom Bretagne) (2008)

20. Mammar, A., Laleau, R.: From a B formal specification to an executable code:
application to the relational database domain. Inf. Softw. Technol. 48, 253–279
(2006)

21. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Transactions on Software Engineering Methodology 15(1), 92–122 (2006)

22. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

23. Idani, A., Labiadh, M.A., Ledru, Y.: Infrastructure dirigée par les modèles pour
une intégration adaptable et évolutive de UML et B. Ingénierie des Systèmes
d’Information 15(3), 87–112 (2010)

24. Wildmoser, M., Nipkow, T.: Certifying Machine Code Safety: Shallow versus Deep
Embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)

25. Frappier, M., St-Denis, R.: EB3: an entity-based black-box specification method
for information systems. Software and Systems Modeling 2(2), 134–149 (2003)

26. Hoare, C.A.R.: CSP–Communicating Sequential Processes. Prentice Hall, Engle-
wood Cliffs (1985)

27. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending state-
charts with process algebra operators. Innovations in Systems and Software Engi-
neering 4(3), 285–292 (2008)

28. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

29. Frappier, M., Gervais, F., Laleau, R., Fraikin, B.: Algebraic state transi-
tion diagrams. Technical Report 24, Université de Sherbrooke, Département
d’informatique, Sherbrooke, Québec, Canada (June 2008)

30. Salabert, K., Milhau, J., et al.: iASTD: un interpréteur pour les ASTD. In: AFADL
2010, Poitiers, France (2010)

31. Milhau, J., Frappier, M., Gervais, F., Laleau, R.: Systematic translation rules from
astd to event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
245–259. Springer, Heidelberg (2010)

	Taking into Account Functional Models in the Validation of IS Security Policies
	Introduction
	Tools for V&V of Role-Based Authorisation Constraints
	Validation Tools Based on OCL
	RBAC Constraints and Alloy
	SecureMova

	Motivating Example
	Using Testing and Verification Techniques
	Some Solutions to Explore
	Using the B Formal Method
	Support of History-Based Constraints
	The astd Notation
	Using astd to Validate a Policy
	Putting It All Together

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

