B4MSecure

User Manual — Starting guide

Team VASCO
Laboratoire d’Informatique de Grenoble

B4MSecure

B4MSecure is an Eclipse platform dedicated to formally reason about functional UML
models enhanced by an access control policy which follows the RBAC model.

The platform acts on three steps:

- Graphical modeling of a functional UML class diagram.

- Graphical modeling of an access control policy using a UML profile for RBAC (Role
Based Access Control) and which is inspired by SecureUML.

- Translation of both models into B specifications, in order to formally reason about
them.

The following sections guide you to the process of installing B4MSecure, defining your
functional model and access control policy using the Papyrus modeling environment, and
finally generating the corresponding B specifications.

1 Setting up B4MSecure

The B4MSecure tool is distributed as an extension to the Eclipse platform so, before starting,
you need to install an Eclipse distribution.

We advise you to use the Eclipse Modeling Tools (Oxygen version) distribution®, as it already
includes some of the base technologies required by B4MSecure. Eclipse distributions are
available at https://www.eclipse.org/downloads/eclipse-packages/.

Windows
432MB 3725 DOWNLOADS
~ I
The Modeling package provides tools and runtimes for building model-based
applications.

The next step after installing Eclipse is to add the B4MSecure extensions. Eclipse provides
facilities for adding new software to the platform or updating software in the system, the
update site location is the only required item to update or install software within Eclipse.

The B4AMSecure update site is available at the following URL:

http://vasco.imag.fr/tools/b4msecure/updates/releases/2.0/

To add the B4MSecure site, start your Eclipse and go to the “Install/Update > Available
Software Sites” preference page, click the “Add” button, and type the name and URL of the
update site, as shown in Figure 1.

1

Note: BAMsecure has been tested with Eclipse Modeling Tools (Neon and Oxygen versions), but you can also setup B4Msecure on an
existing Eclipse installation of your choice. We warn you, however, that B4Msecure requires at least the following versions of Eclipse
Modeling projects: EMF 2.12, UML2 5.2, OCL 6.2, Acceleo 3.7, QVTo 3.6

https://www.eclipse.org/downloads/eclipse-packages/
http://vasco.imag.fr/tools/b4msecure/updates/releases/2.0/

2 eclipse-workspace - Eclipse

File Edit Navigaste Search Project Run | Window | Help

[mild @ DB O New Window °

- Madel Brplorer 52 B > | o |typefilter text Available Software Sites v
Appearance > L= 5 ar ~

[ype Fertes Show View > | A [type fitter text

espadis ; css Name - Locatic Add..

Navigation > #] Modeling Package Updates for Ecli... http://1 -
EMF Compare 8] Ovygen i dit

Pref EmiParsleyDs!
[EISrEnees H’;p“'“y = #] The Eclipse Project Updates http://1

Install/Update
Automatic Updates
Available Software S

Java |

Logic Diagrams] = 1 1 sie x

Madel Editor

Madel Validatio

Myhyn

Remove

<

Reload

Enable

Name: [B4Msecure | Local...

ocL Location: | hitp://vasco.imag.fr/tools; urefupdatesfieleases/2| | Archive...
Oomph

Papyrus
Plug-in Develop

Run/Debug @ Cancel

Sirius

Team v
'/Z\/ (_J Apply and Close Cancel

Figure 1 Adding B4Msecure update site

After adding the Update Site, you can proceed with the BAMSecure installation. Go to the
install wizard (“Help” > “Install New Software...”) and select the B4MSecure site in the “Work
with” drop-down list, as shown in Figure 2.

ject Bun Window Help
c Q- Qi@ Wecome @ st o x
odel Available Saftware
type fiter text Check the terms thet you wish to nstal, e
CaleShifteL
Workwith: | B4MSecure - htg://vasco.imag fltools/bamsecure/updates/ eesses/2.0][ada Manage...

& Report Bug or Enhancement... S

Select 201 Deselect A1 2items selected

Detaits

S8 5how only thelatest vesions of svaiable softwre

£ cutline i not available:

Figure 2 Installing B4MSecure

To complete the installation, just follow the instructions®: you will be prompted to select the
software to install, accept the software license, and probably to restart your Eclipse.

Once you have installed B4MSecure, you also need to install an UML modeling tool. We use
the Papyrus Modeling environment.

If you use Eclipse Modelling Tools the easier way is to install Papyrus is to use the discovery
interface (“Help” > “Install Modeling Component”) and select “Papyrus”, as shown in Figure
3. Detailed instructions for installing Papyrus, and version compatibility requirements, are
available at https://www.eclipse.org/papyrus/download.html.

At some point during the installation, a warning will inform you that you are installing unsigned software. Just trust our software, and
continue with the procedure.

https://www.eclipse.org/papyrus/download.html

£ eclipse-workspace - Eclipse
File Edit Navigate Search Project Run Window | Help

(i~ @ iNitr-0O- Qi @ Weome
5. Navigator £ (@) Help Contents.
j/ Search

5
Show Contexual Help

© Eclipse Modeling Components Discovery

Eclipse Modeling Compenents Discovery

Pick @ modeling component to install it,

Show Active Keybindings... Crl-Shift+L Find: | papyrus
Tips and Tricks..
N Modeler
& Report Bug or Enhancement,
Cheat Shests... Modeling environment tools.
Eclipse User Storage > [~ f) Papyrus

Perform Setup Tasks. Papyrus provides an integrate:

Check for Updates related languages such as SysML.

Install New Software.

Install Modeling (:mpl:rvfnta

Install Modeling Components
Eclipse Marketplace..

O POEE &0

About Eclipse

d, user-consumable
envirenment for editing models based on UML and other

@

[m) X

&

Incubation

by Eclipse.org, EPL @

Cancel

Figure 3 Papyrus installation

At this point you have successfully completed the environment setup. All the required software is
installed and you are ready to start using B4MSecure. The next step is to create an UML model

describing the functional and security aspects of your system.

2 System Modeling

We will use Papyrus to create the models used by B4MSecure. We expect the reader to be familiar

with the UML class diagram editor, otherwise please refer to a

Papyrus tutorial. Papyrus

documentation is available at https://www.eclipse.org/papyrus/documentation.html

Use the new project wizard (“File” > “New” > “Project”) to create a new Papyrus project named

“HospitalSystem”, with a root Class Diagram.

@ New Project a % || @ Mew Papyrus Project o % || © b Pagyras Project o % | @ Mew Papyrus Project o x
Select 3 wizard — Select Architecture Context =) © =) | nitialization information =)
Create a project for a new Papyriss model [UML or cthes DSML) Sele itecture conted(s) and viewpoins 1o apply tothe |[4 Choose your praject peth and the model name: £ Select rost element name and representabion knd i
P
tots Broject name: [HosgitaSyment Roct model clement name:
ngneering Hespitalsyster
O Profie 2 Use detaut location
A% o
Mode fie name: Meme ~

Hospitalsystem

mE

3 = ORI T D [e

Cancel

Figure 4 Papyrus project’s creation

You can lod a template:

) A UML modelwith besic prmitve types

Choose a profile to apply

If you go to the Papyrus perspective, you should see a project named “HospitalSystem”, with a single
empty UML model file (named “HospitalSystem” as well). We are going now to create the functional

and access policy packages.

https://www.eclipse.org/papyrus/documentation.html

2.1 Structuring the model

First, use the palette of the root class diagram to create two packages: the first one will store the
functional model, and the second one will store the security model. Let us name these packages
“Functional” and “Policy”. Use the Model Explorer view to create a class diagram for each package,
as shown in the following figure.

@ eclipse-workspace - HospitalSystem HospitalSysternai - Eclipse - o x B - Bim ol fenma ey ®m
File Edit Navigste Search Papyrus Project Run Window He P ’
M- @rini2B-@-i@ia- . BrdrrErRQeHror Wl © ecipiework >
. ilw e e Edit Mavi - * el
. = ® >
73 HospitatSystem. a >
: M Delete Debete % ‘
Project Explon
inda ez D
& Hospitals B
== £ Gt CHleX 0
Copy Qe By Pac
7 s
Prafies e
73 Medel refactor > 4
Ly Import > 18
L1 Bpot >
Madel Explon
008 B & Suinch Avchitecure Comen
* Dapendency o
* Dependency Branch B -
D% s Clas Diagram 17 [Ba Functional View,
BE Outline. % T [Propenies 1| Jf Model Validation 4 Documentation %57 References [Console 13 Cas
B3 Closs Dingramn 15 | B Functional View
3 Function Class Diagram
e Hame [Functionat vied
Style Label
Advanced
Disgram Kind B3 UML i Class Disgram
Gwner 5 Functions - %
Root element 3 Functional - % .

Figure 5 Structuring the model

2.2 Creating the functional model

Select the class diagram of the “Functional” package, and build the following model:

H patient E MedicalRecord
&= + data: String [0..1]
1 mRecords EL - valid: Boolean [1] = false {readOnly, ...
+ patient + medicalRecord | § + validate()

Figure 6 Hospital System, functional model

Attribute “data” is declared public and optional’. Attribute “valid” is private, mandatory and has a
default value of false; it is also declared as read only, this means that no modification operation will
be generated in the B specification for this attribute. Association “mRecords” links medical records to
a single patient, while a patient may have several medical records. This association can be navigated
in both directions. All these features are specified in the Properties view of the editor. Method
“validate” is a public operation of class “MedicalRecord”, with no parameters or result.

optional attributes have multiplicity 0..1, mandatory attributes have multiplicity 1

2.3 Generation of the B functional specification

At this point, we have a functional model of the system; we can now use B4MSecure to generate the
corresponding B specification. B4MSecure is available in the context menu associated to an UML
package (it is activated by selecting a package and right-clicking on it).

In our scenario, we are going to select the “Functional” package in the Model Explorer, open the
contextual menu and choose the B4MSecure transformation, as shown in the following figure.

B Model Explorer 51 = i @ 13 A% Y= O

w =1 HospitalSystern
BJ Class Diagram

P17 <Package Import> UML Primitive Types
~ B3 Functional
B4 Fun

Navigate >
] pati
« D Me NewChild >
= | New Relationship >
=l Mew Diagram >
ELTED Mew Table N
s fR(¥ Delete Delete
v B Policy |) ndo vz
BB A L R CarlY
By Class Diagi
Cut Ctrl+X
Copy Ctrs € [Praperties
T Paste Ctrl+V 3 Functiol
[aa
Profiles > ML
8= Qutline 13 3 Model refactor 4 @ sl - o Comments
E2y Import > Profile
L3 Egort ’ Advanced
Enable write
_ 4 Switch Architecture Context...
£ Switch Architecture Viewpoints >
~ J Validation >
Bt BAMSecure > @4 Transform UML package |

s Show EClass infermation

Transform UML package

=+ Show References

Figure 7 Generation of the B specification using B4MSecure

After execution of the B4mSecure transformation®, several files are created in the same folder of the
UML model, as shown in Figure 8. The generated B specification machine has the same name of the
selected package, with the file extension “mch”. So, in our case it is named “Functional.mch” (we can
ignore, by now, the other generated B machine files, which are related to the security policy).

5 Project Explorer 33 =R-Y
~ [HospitalSystem
w ~3 HospitalSystem
(&) bmethod
~P di
2] notation
B tbac
[trace
& uml

| AbstractScenario.mch

=| ConcreteScenario.mch

Functional.mch

5] Userhssignments.mch

Figure 8 B4MSecure generated files

4 . I)
You can see the log of the execution of the transformation in the Console view

In the resulting B specification, shown in Figure 9, classes are represented by sets (e.g. PATIENT and
MEDICALRECORD). The existing instances of the class are represented by variables (e.g. Patient and
MedicalRecord). Attributes are translated to functions (e.g. MedicalRecord data and
MedicalRecord_valid). Associations are represented as a relation between the sets of instances (e.g.
mRecords®).

=| Functional.mch &2

1 MACHINE
Functional

SETS
STR;
PATIENT;
MEDICALRECORD

P T B RTTR

woca

ABSTRACT_VARIABLES
Patient,
MedicalRecord,
mRecords,
MedicalRecord data,
MedicalRecord_valid

==
(s3]

INVARIANT
Patient : FIN(PATIENT) &
MedicalRecord : FIN{MEDICALRECORD) &
mRecords : MedicalRecord --» Patient &
MedicalRecord_data : MedicalRecord +-> STR &
MedicalRecord_valid : MedicalRecord --»> BOOL

[
N [T, B N WY % T)

[l
W

[ex]

INITIALISATION
Patient := {} ||
MedicalRecord := {} ||
mRecords := {} ||
MedicalRecord data := {} ||
MedicalRecord_valid := {}

W s L pa

w0 oca

OPERATIONS
MedicalRecord_validate(aMedicalRecord) =

PRE aMedicalRecord : MedicalRecord
THEN skip
END;

[y RS WY =)

Patient_MEW(aPatient) =
PRE aPatient : PATIENT &
aPatient /: Patient

Ll g L L Db L RO RS R RS RS RO BRI RD R RO
o & - .

W

(s3]

THEN Patient := Patient \/ {aPatient}
END;

[N .Y

I R =

Figure 9 B functional specification

Notice also that each method defined in a class in the model is translated to a B operation (e.g.
MedicalRecord_validate), that takes as parameter an instance of the class. The generated operation
has an empty (skip) substitution.

B4MSecure also generates basic operations to manipulate the model: class constructors (e.g.
Patient NEW), class destructors, attribute’s accessors, attribute’s setters, association navigation, and
association’s setters. A detailed explanation of the B4MSecure translation is beyond the scope of this
manual; see the publications section of the site for a more thorough description.

5)))) .
Notice that optional attributes, for example data, are translated to a partial function

6) s . . . s N .
Notice that in this particular case, the Patient end of the association mRecords has multiplicity 1, so the relation is a total function

2.4 Adding invariants to the B specification

The generated B specification has invariants that essentially represent typing and multiplicities
defined in the UML model. You may want to add domain invariants to your specification.

One possibility is to directly edit the generated file; however, your changes will be lost the next time
that you execute the B4MSecure transformation. B4Msecure then offers the possibility to directly
specify your B invariants in the UML model file.

Consider for instance the following invariant for the Hospital System: “a patient cannot have more
than one medical record that is not validated”. Given the generated B specification, this invariant
can be expressed by the following B predicate:

!(p).(p : Patient => card((mRecords~[{p}] <| MedicalRecord_valid) [> {FALSE}) <=1)

To add this invariant to your UML model, select the “Functional” package in the Model Explorer, and
a new Constraint, as shown in the following figure:

A P
I§5 Project Explorer &3 P4, AnyReceiveEvent]
~ (=% HospitalSystem Artifact
~ ~3 HospitalSystem @ CallEvent
[&) bmethod -
;05 dim © A ChangeEvent
=| notation Q Class
[rbac “» Collaboration
[trace = Comment
&) uml . =1 Component
=| Abstractbcenario.mch .
=| ConcreteScenario.mch 7} (EEnEiEDs
=| ContextMachine.mch DataType
=| Functional.mch % DeploymentSpecification
=| RBAC_Model.mch Beviee
=| UserAssignments.mch 4 Durati
¢ uration
{d} DurationConstraint
d DurationInterval
&1 DurationObservation
oa
s Elementlmport
B Model Explorer &3 ' . P]
Enumeration
v B :jspitaIS)rstem = EnumerationLiteral
B Class Diagram — . -
] ExecutionE t
B <Package Import> UML Primitive Types sed |.0n mrenmen
w B3 Functinnal %+ Expression
BEF Navigate &® FunctionBehavior
v P i
= . New Child [* Informationltem
=1 New Relationship E InstanceSpecification
Son New Diagram 12 InstanceValue
B Polic E] NewTable E Interaction
ki Delete Delete [?] InteractionConstraint
& Interface
AN
<~ Undo Ctrl+Z 2 Interval
i Gkl 12} IntervalConstraint
o Cut CtrleX TF LiteralBoolean
& Copy Ctrlec 2% Literalinteger
Paste Cirley ool LiteralNull
110 LiteralReal fa
Profil —
) rotties % LiteralString

Figure 10 Adding constraints to the functional package

By default, Papyrus will create an OCL constraint, as shown in Figure 11; but it is possible to specify
constraints in other languages. To add a new language: select the constraint value in the Model
Explorer, go to the Properties view, click the “+” sign in the language section (red-circled in the

figure). You will be prompted to add the new language (as shown in the inset, at the right of the
figure), add the B language.

B Model Explorer 87 = B @ 1%, B%S ¥ = O [OProperties 32

|77 tongusge o X

v B9 HospitalSystem ~ | %Iy constraintSpec
Byg Class Diagram
7 <Package Imports UML Primitive Types umL Name [constraintspec ocL 1)
~ B3 Functional ———— c 8
B Functional View Profil Language | Ele] e i = Z
rofile
v) Constraintd e d
ocL Natural language|
Y constraintSpec Advanced ocL oueael [+
~ E patient = ®
& medicalRecord : MedicalRecord [0.7]
E MedicalRecord
/ mRecords
- v Visibility public oK Cancel v
< >
e Behavior <Undefined> . T STRE —

Y 1item selected
Figure 11 Papyrus: adding a new language to a constraint

Once you have added the B language, select it, and type your B predicate in the Properties view, as
shown in Figure 12. Notice that we have also removed the unneeded OCL constraint, and renamed
the constraint to give it a meaningful name.

B s g | e s 2 || s ey T
B Model Explorer 53 =R E %G < = 8 [OPrroperties i3 | € Documentation % References B Console (2] Problems 2 =0
v [HospitalSystem A Y I(p).(p : Patient => card({ mRecords~[{aPatient}] <| MedicalRecord valid) |> {FALSE}) <= 1)
By Class Diagram
%, <Package Import> UML Primitive Types uML Name [Label [
~ B3 Functional e
B Functional View p=s Language *|Rs (p).(p : Patient => card((mRecords~[(aPatient]] <| MedicalRecord_valid) [> {FALSE}) <= 1)
v {7} InvalidRecordsConstraint B
1 \(p)-{p : Patient => card({ mRecords~[{aPatient]] <| Me Advanced
~ H Patient
=) medicalRecord : MedicalRecord [0.7]
~ E MedicalRecord
[patient : Patient
1 daba - Strina 0 11 v Visibility public v
< >
Behavior <Undefined>] [Type <Undefined> = =
O4a

Figure 12 Specifying a B constraint to the model

At this point, the B invariant has been added to the UML model. We can now execute B4Msecure
(see section 2.3) and regenerate the B specification. It will include the corresponding invariant.

~J *HospitalSystem.di |2 Functional.mch 2
1 MACHINE
2 Functicnal
3
4 5ETS
5 STR;
6 PATIENT;
7 MEDICALRECORD
8
9 ABSTRACT_VARIAELES
16 Patient,
11 MedicalRecord,
12 mRecords,
13 MedicalRecord_data,
14 MedicalRecord_valid

12

16 INVARIANT

17 Patient : FIN(PATIENT) &

18 MedicalRecord : FIN(MEDICALRECORD) &

19 mRecords : MedicalRecord --» Patient &

@ MedicalRecord_data : MedicalRecord +-»> STR &

1 MedicalRecord_wvalid : MedicalRecord --> BOOL &

2 '(p).(p : Patient => card((mRecords~[{aPatient}] <| MedicalRecord_valid) |> {FALSE}) <= 1) /* Defined in UML 1
2

4 INITIALISATION

Patient := {} ||
MedicalRecord := {} ||
mRecords := {} ||
MedicalRecord_data := {} ||
g MedicalRecord_valid := {}

1 OPERATIONS

2
3
e
8
9

L R R ORI BRI BRI BRI R ORI ORI R

Figure 13 Domain invariants in generated B specification

2.5 Adding preconditions and operation’s body

As we pointed out, methods defined in the UML model are translated by default into an empty B
operation skeleton. To complete the B specification, we may need to add preconditions and specify
the behavior of these methods.

Consider for instance the method “validate” in the Hospital System. We can add a simple pre-
condition to express the fact that validation only occurs for invalid records. This can be expressed in
the B specification as predicate over the parameter of the operation MedicalRecord _validate:

MedicalRecord_valid(aMedicalRecord) = FALSE

In a similar way, one effect of the operation is to record the validation in the corresponding attribute.
This can be expressed by the following B substitution:

MedicalRecord_valid(aMedicalRecord) := TRUE

As was the case for the invariants, we want to keep this information in the UML model (so that we do
not need to edit the generated file). B4AMsecure offers this possibility using the same approach that
for invariants: we add constraints to the method in the UML model.

In our example, we select the “validate” method in the Model Explorer, and add two B constraints
(the procedure is the same as for the invariants, except that we select the method not the package),
the result is shown in Figure 14.

. Modsl Bxplorer 53 EREAREBES Y= O OPropertes 2
o 'z 5 P
= patient: Patient ~ ¥1¥ MedicalRecord_valid(aMedicalRecord) := TRUE
© data: String [0.1]
— ML Name [Label
v @ validate [———
~ {7} pre-condition Profile Langusge | R MedicalRecord_valid(aMedicalRecord) = TRUE
515 MedicalRecord_valid(sMedicalRecord) = FALSE 5
« 2 body Advanced
17 MedicalRecord valid(zMedicalRecord) := TRUE
/ mRecords
1 Policy
"
Pt o Mriell thrnm ErnmeDrimitiveTonee v Visibility public
< >
Behavior <Undefined>] [& Type
Oaa P

K1Y 1 item selected

Figure 14 Defining pre-conditions and body

After that, select the “validate” method, and in the Properties view change its body (as shown in the
following figure) by selecting the constraint just defined.

Figure 15 Specifying operation's body

In a similar way, go to the precondition section in the Properties view, and select the corresponding
constraint, as shown in Figure 16.

| ~ 1 Hospitalsystem

v 3 HospitalSystem “P Precondition 0o

bmethod
Pa

“ = mr= = %) pre-candition

notation B9 Hospitalsystem

bac + £ Functional
a «:'.:‘: [2) InvalidRecordsConstraint

v & MedcalRecard

AbnacScensio mch < & vaiste 0
ConcreteScenariomeh 17 body
ContextMachine.mch >
Functionalanch [@ —vora=
REAC Madel meh falRecord | + velidatel)
Userssignments.mch ’—|

0
x
Recent selections ey
7} pre-conditien
| 3 7] [%] vsbiiey
B Model Explores © Eq
= patient : Patient =
i data : String [0..1) Owned parameter
id : Boolean =
te)
pre-condiian
MedicalRecord_val oK Cancel
«) bady :
T MedicalRecond_valid(aMedicalfecond) = TRUE
mRecords Precondition Posteondition
£ Poicy
B8 <EPockage M
< o >

Das
Figure 16 Specifying preconditions

At this point, the B precondition and body have been added to the UML model. We can now execute
B4Msecure (see section 2.3) and regenerate the B specification.

=| Functional.mch &3

~¥ HospitalSystem.di B

1 MACHINE

2 Functicnal

3

4 5ETS

5 STR;
PATIENT;
MEDICALRECORD

6
9 ABSTRACT_VARIABLES
a
1
2

1 Patient,

1 MedicalRecord,

1. mRecords,

13 MedicalRecord_data,
14 MedicalRecord_valid
15

16 INVARIANT
17 Patient : FIN(PATIENT) &
18 MedicalRecord : FIN(MEDICALRECORD) &

19 mRecords : MedicalRecord --» Patient &

28 MedicalRecord data : MedicalRecord +-> STR &

21 MedicalRecord_valid : MedicalRecord --> BOOL &

22 I(p).(p : Patient => card((mRecords~[{aPatient}] <| MedicalRecord_valid) |> {FALSE}) <= 1) /* Defined in UML
23

24 INITIALISATION

25 Patient := {} ||

26 MedicalRecord := {} ||

27 mRecords = {}

28 MedicalRecord_data := {} ||

29 MedicalRecord_valid := {}

e

31 OPERATIONS

32 MedicalRecord_validatE() =

33 PRE aMedicalRecord : MedicalRecord &

34 /* pefined in UML model */ MedicalRecord_valid(aMedicalRecord) = FALSE
35

36 THEN /* Defined in UML model */ MedicalRecord valid(aMedicalRecord) := TRUE
37 END;

38

39 Patient_NEW(aPatient) =

48 PRE aPatient : PATIENT &

41 aPatient /: Patient

2

43 THEN Patient := Patient \/ {aPatient}

Figure 17 Body and pre-conditions in generated B specification

We have finished our functional system model. Now we can start defining the associated security
policy.

3 Security Modeling

To model the access control policy, BAMSecure uses a UML profile for RBAC (Role Based
Access Control) that is inspired by SecureUMIL. In this section we will present how to use the
profile in Papyrus, to define the security policy. We do not discuss in depth the concepts of
SecureUML, the interested reader can refer to the paper SecureUML: A UML-Based

Modeling Language for Model-Driven Security by Torsten Lodderstedt, David Basin, and
Jurgen Doser.

3.1 Applying the SecureUML profile

The first step to use an UML profile is to apply the profile to your model. In Papyrus, this is
done by selecting the root of your model, and using the Profile tab of the Properties view, as
shown in Figure 18. To select the profile, click on the “apply registered profile” button (the
plug icon, red-circled in the figure) and choose the B4MSecure - SecureUML profile.

uick Access || 55 | ot & 73] 45

S Apply profiles from Papyrus repository : [u] X
Select an item to open (7 = any character, * = any siring): -
=] Matching items:
2 notation ™y
B rbac 4" ActionLanguage
-9 BaBAMSecure - SecureUML Profilel
[trace -
& uml &) Ecore
2 AbstractScenario.meh [By0cL for umL] MedicalRecord
nereteScenario.mch }fpawus Documentation data: String [0..1]
ntextMachine.mch 22 Papyrus Internal alick Boolean [1] = false fre Data Type
nctional.mch &) Standard =0 <
:AC_Model.mch % TextualRepresentationBackup [Validate) = Edges @
|2) UserAssignments.mch .4, Abstraction
» /" Association (Directed)
B ModedBplorer 2 EfE @B EES = B / Association Branch

v [HospitalSystem
BE Class Diagram [

B2 <Package Import> UML Primitive Types

onal B4 BaiSecure - SecureUML Profile - Laboratory LIG, Vasco team

(Read-only table)

= e —
= HospitalSystem
uMmL Profile applications - | -
Name Location Version

Figure 18 Applying the SecureUML profile

3.2 Defining the Role model

In SecureUML, security roles are represented by classes, and the role hierarchy is represented using a
class generalization hierarchy. In our scenario, we are going to use the following role model:

«Roles «Roles
H secretary H Medicalstaff
«Role» «Role=
E poctor = Nurse

Figure 19 Role model (Hospital System)

https://dl.acm.org/citation.cfm?id=719477
https://dl.acm.org/citation.cfm?id=719477

To create the model open the class diagram associated to the “Policy” package, then create the
classes and inheritance hierarchy shown in the previous figure. To differentiate domain classes from
security roles, the SecureUML profile defines a stereotype named Role.

We need then to apply the stereotype to the classes in our UML model that represent roles. In
Papyrus, this is done by selecting the class, and using the Profile tab of the Properties view, as shown
in Figure 20. To select the stereotype, click on the “+” button (red-circled in the figure) and choose
the Role stereotype.

=)

File Edit Navigate Search Papyrus Project Run Window Help
e R @ BB e | RS e s e Wy oy 2 [100% TR}
[Project Explorer 52 5| % = B ~3HospitalSystem.di 32

~ 1 HospitalSystem

~ ~3 HospitalSystem
d x <Role=
H MedicalStaff
Applicable Stereatypes: Applied Stereotypes:
Stereotype Information Role

SecureUML:DSD_RoleMutex
SecureUML:S5D_ReleMutex
SecureUML:User

B ’ | L |
oK Cancel
F5 Functional
v B Policy o B3 Class Diagram | B Functional View | By Access policy view 53
BE Access policy view
[«Role» Medicalstaff I Properties 37§ Documentation % References (& Console [£] Problems
E poctor
E Nurse
— Applicd stercotypes: ' & ’
s
Comments
Profile
Advanced

Figure 20 Applying an stereotype

At this point, we have finished defining the role model. We can now execute B4Msecure (see section
2.3) and regenerate the B specification. The corresponding B security specification is generated in file
“UserAssignments.mch”. A detailed explanation of the BAMSecure security translation is beyond the
scope of this manual; but you can have a glimpse of the generated machine in Figure 21.

[Userdssignments.meh £

2 MACHINE

3 Userassignments [2/ Userhssignments.mch 52

4)

5 SEES)

6 ContextMachine

7 5 INITIALISATION
DEFINITIONS

roledf = {
(none |-> {})
T

Roles_Hierarchy i=
(Doctor |-> MedicalStaff)
(urse |-> Medicalstaff)

assignedUsers(role)=={uu|uu:USERS & role:role0f(uu)
assignedUsersOfRoleSet(roleset)==union({uu| uu:POW(

J*INTER(rr).{rr:roleSet | assignedUsers(rr)} ;*/ -
allassignedusers(role)=={uu|uu:USERS & -

({role}\/getSubRoles({role})) /\roleOf(uu)/={} -
getSubRoles(roleset)==closurel(Roles_Hierarchy~)[ro -

I

TITTETTTSETrTeTTT

suthorizedusers(roleset)== assignedUsersOfRoleset(g

getsuperRoles(roleset)==closurcl(Roles_Hicrarchy)[r

allassignedRoles(user)==getSuperRoles(role0f (user)) Session:={} ||

SRRl -Raiofri i ol el e

SSD_mutex :={

I

DSD_mutex :={

SETS
ROLES = {Doctor,Nurse,Secretary,MedicalStaff}

27 VARIABLES
28 roleof,

29 Roles_Hierarchy, 56 OPERATIONS

Figure 21 Role model in B

3.3 Defining the User Assignment model

In SecureUML, security users are represented by classes distinguished with the stereotype User. A
user assignment (assigning a role to a user) is represented by defining an association between the
class representing the user and the class representing the role.

In our scenario, we are going to use the following user assignment model:

<Rolex <Rolex
H secretary H MedicalStaff
<Roles «Roles
E Doctor H Nurse
<Uhs
U <UA»
<Users <lUsers <Users
artin ary 'au
M, M Paul

Figure 22 User Assighment

To create the model in Papyrus, just follow the same procedure explained in the previous section,
and apply the stereotypes as appropriated. Notice that the associations have the applied stereotype
UA. The procedure to apply a stereotype to an association is similar, just select the association and
use the Profile tab in the Properties view.

Notice that Papyrus by default doesn’t display the stereotypes of associations (and always displays
ends’ names and cardinalities). You can customize the display of an association in the diagram by
selecting it and using the contextual (right-click) menu “Filters”, as shown in the following figure.

Usehssignmentsmeh 7D HospitaiSystem i

© Label Monager o ox
| Seecttheubestodisplay.
== o
secretary Medicaistat | | | Label Role Displayed Test
~ @/ Adoctor mary
¥z Name Mo Te To Display)
5] — 1
- 0 Role + mar
£ Sterotype Mo Test To Display]
[T Targethutipicity 0.1
| [0 Torgetfcle + doctor
ot
Doctor |
ua,
01 rmy
cma
. —A Seiectal | | Deselectan
Users ser
Martin e
R Deeteseecs (5 e
DeleteFroms|
3 Format >
~3 Fiters > -
J Validation B A
- e >
Profies >
« % Show EClassinformation
58 Class Diagram | B Funchional View B3 Access poliy v . gp oo
o >
MSecure(/HospaatsystemHospi Show Properties View A Show Al Labels -
Shaw References View 3 ide Al Labels [[agord: patient (]
Show Documentation View % Shew/Hide Labels |: :patient []
. vy 18mcand [

Figure 23 Customizing associations ‘display

At this point, we have finished defining the user assignment model. We can now execute B4Msecure
(see section 2.3) and regenerate the B specification. The corresponding B security specification is
generated in files “UserAssignments.mch”.and “ContextMachine.mch” as shown in the following
figure.

UserAssignments.mch &2 | <) HospitalSystem.di | Conte

currentlser : USERS &

closurel(Roles_Hierarchy) /\ id(ROLES) = {]

5
6
8
] Roles_Hierarchy : ROLES <-> ROLES &
9
2]

role0f : USERS --> POW(ROLES) & I

- Session : USERS<-» ROLES &

45 P{uu). (uu:USERS & uu:dom(Session)=> Sessior
46

47 SSD_mutex : POWL(ROLES)<-*NAT1 /*card(Rolec
43 'nn. (nn:NAT1 & nn:ran(S5D_mutex) => nn»>=2)
49 Irs. (rs:POW1(ROLES) & rs:dom(SSD_mutex) =»
5@ 'uu. (Uu:USERS & uu:dom(roleof) =

51 Irs. (rs:POW1(ROLES) & rs:dom(S5D mutex)
52 card((closurel(Roles_Hierarchy)[rc
53)

54)&

55

56 DSD_mutex :POWL(ROLES)<->NATL &

57 'nn. (nn:NATL & nn:ran(DSD_mutex) =»> nn>=2)
58 'rs. (rs:POW1(ROLES) & rs:dom(DSD_mutex) =3
59 luu. (uu:USERS & uu:dom(Session) =»

68 'rs. (rs:POW1(ROLES) & rs:dom(DSD_mutex
61 card((clesurel(Roles_Hierarchy
62)

63)

roleof := { |Z ContextMachinemch &% | |5 UserAssignments.mch
[(Martin|->{Secretary}) .
&9, (Mary| ->{Doctor}) .
q, (Paul|->{Nurse}) iMACHINE .
-1 (none |-> {}) 3 CoentextMachine
i > 5 SETS
74 Roles Hierarchy := { 6 USERS = {Martin,Mary,Paul,none}
75 (Nurse |-»> Medicalstaff) 7
76, (Doctor |-> MedicalStaff) 8 END

a

'l
1
[

1
.

Figure 24 User asigment model in B
3.4 Defining the Permission model

In SecureUML, security permissions are represented by an association class between the class
representing the role and the domain class representing the secured entity. Allowed actions are
represented by methods of the permission.

For example, Figure 25 shows a permission policy expressing that a “secretary may create a patient
object”. Notice the Permission stereotype applied to the association class, and the EntityAction
stereotype applied to the allowed action create’.

[Patient [<Roles
+ patient + secretany K Secretary

=Permissions
& SecPerm

@ «EntityActions + create()

Figure 25 Secretary's permission

7 . . e .
The allowed entity actions that can be specified in SecureUML are : create, read, update/modify, delete

Figure 26 shows a policy expressing the following access rules: “Every member of the medical staff
may read the public information of medical record (this means that nurses and doctors have read
access to the “Data” attribute)”. “Nurses may only create a medical record”. “Doctors may modify the
data of a medical act and validate it”. Notice the MethodAction stereotype in operation validate®, it
is used to express that the method can be executed by a user assigned to the specified role.

<Roles
B Medicalstaff

«Permission=
£ MedicalPerm

+ medicalstaff]

@ «EntityActions + read()

+ medicalrecord

Q“Rile” B MedicalRecord @ Q"R;‘E’:
urse — octor
= nuse + medicalrecord + medicalrecord + doctor [— =200
=Permissions «Permissions
g NursePerm 5 DoctorPerm
¢ «EntityActions + create) @ ~EntityAction= + modify])
{8 =MethodAction» + validate()

Figure 26 Security permission model

At this point, we have finished defining the permission model. We can now execute B4Msecure (see
section 2.3) and regenerate the B specification. The corresponding B security specification is
generated in file “RBAC_model.mch”, as shown in the following figure.

~J HospitalSystem.di | [2 RBAC_Modelmch 52
(Patient_UnsetMedicalRecord_Label |-» mRecords_end_MedicalRecord_Label)
(Patient_AddMedicalRecord_Label |-» mRecords_end MedicalRecord Label)

(Patient_RemoveMedicalRecord_Label |-> mRecords_end MedicalRecord Label)

Pl
~J HospitalSystem.di =| RBAC_Modelmch 3 PermissionAssignement - {)
= - (MedicalPerm |-> (MedicalStaff |-> MedicalRecord Label})
B - - v e (NursePerm |-> (Nurse |-> MedicalRecord_Label))
49 (DoctorPerm |-> (Doctor |-> MedicalRecord Label))
58 ActionsType = {read, create, modify, delete, L e I-> (Secretary |-> Patient Label))
51
- _ EntityActions := {
22 PERMISSIONS = { (MedicalPerm |-> {read})
53 MedicalPerm (NursePerm |-> {create})
_ (DoctorPerm |-> {modify})
.
o4 NursePerm (SecPerm |-> {create})
55 DoctorPerm I
5B SecPerm MethodActions := {
e (MedicalPerm |-> {})
>/]’ (NursePerm [-> {})
58 (DoctorPerm |3 {MedicalRecord_validate_Label})
- (secPerm |-> {})
59 yol
e
58 VARIABLES isPermitted := {}
61 AttributekKind, Attributeof, Operationof, Ass 27
286 OPERATIONS
62 constructor0f, destructorof, setterOf, gette
63 roleGetterof, roleSetterof secure_MedicalRecord_validate(aMedicalRecord) =
- . . *. g PRE aMedicalRecord : MedicalRecord &
B4 PermissionAssignement, /* Defined in UML model */ MedicalRecord_valid(aMedicalRecord) = FALSE
65 EntityActions, THEN
66 MethodActions, SELECT
- MedicalRecord_validate_Label : isPermitted[currentRole]
&7 StereotypeOps, THEN
58 izPermitted MedicalRecord_validate(aMedicalRecord)
- END
59 INWARTANT £ND;
wn

Figure 27 Permission specification model in B

8 . . .
The name of the Entity Action method must match a method in the secured class

4 Conclusion

This guide has provided you with step-by-step instructions on how to use Papyrus and SecureUML to
model secured systems in UML. Once you have completed your model, we have shown you how to
use BAMSEcure to generate the corresponding B specification.

B4MSecure enables you to perform formal reasoning on your model. You can, for instance, take the
B specification generated by B4MSecure and use the available tools of the B Method ecosystem for
verifying proof obligations, or perform model checking.

We hope that B4MSecure will be a useful tool for you, but please contact us if you experience
problems or simply want to request an enhancement.

