Dependability of Model-Driven Executable DSLs

Critical Review and Solutions

Akram Idani

Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France

Akram.IdaniQuniv-grenoble-alpes.fr

Abstract. One of the promising techniques to address the dependability
of a system is to apply, at early design stages, domain specific languages
(DSLs) with execution semantics. Indeed, an executable DSL would not
only represent the expected system’s structure but it is intended to itself
behave as the system should run. However, in order to make executable
DSLs a powerful asset in the development of safety-critical systems, not
only a rigorous development process is required but the domain expert
should also have confidence in the execution semantics provided by the
DSL developer. The challenge addressed in this paper is then to ver-
ify whether execution semantics provided by Model-Driven Engineering
(MDE) tools comply with the expected behaviour of a given DSL. We ex-
perimented existing MDE approaches with associated implementations
(QVT, Kermeta, fUML), in order to debug a safety-critical system. This
paper presents the lessons learned from this study and provides formal
alternatives, based on the B method and CSP process algebra, which are
well-established techniques allowing interactive animation on the one
hand and reasoning on the behaviour correctness, on the other hand.

Keywords: B Method, Domain Specific Languages, MDE.

1 Introduction

The Model Driven Engineering (MDE) paradigm suggests solutions to the two
major problems of software development: (1) the software complexity, and (2) the
gap between conceptual models and coding activities. Indeed, on the one hand,
MDE advocates for the use of models throughout the engineering life-cycle in
order to reduce complexity, and on the other hand, it is assisted by numerous
tools (e.g. EMFEI7 Xtexﬂ ATIEI) dedicated to a clear separation of concerns
ranging from requirements to target platforms, and going through several design
stages. Interoperability between these tools is favored by the use of standardized
meta-modeling formalisms which increases automation especially for developing
domain specific languages (called DSLs). In the last decade, several research
works have been devoted in order to enhance DSLs by underlying operational

! https:/ /www.eclipse.org/modeling /emf/
2 https:/ /www.eclipse.org/Xtext/
3 lhttp://www.eclipse.org/atl/

https://orcid.org/0000-0003-2267-3639
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
http://www.eclipse.org/atl/

2 Akram Idani

semantics which makes them executable. One of the major advantages of exe-
cuting a DSL is to provide abstractions of the system’s behavior and hence allow
the domain expert to perform early analysis of the expected system. Indeed, an
executable DSL can be simulated and debugged by existing MDE-based tools
(e.g. the Gemoc Studiﬂ leading to a better quality than a static DSL. Unfor-
tunately, although these advantages show that executable DSLs are a promising
paradigm, several issues related to correctness and the level of trust that one can
have in execution engines are still challenges for a rigorous development process.

In this paper, we lead an experimental study built on the Petri-net DSL as it
is developed by existing works [TI8TO/TT] that applied MDE frameworks such as
xMOF-fUML, QVT and Gemoc-Kermeta in order to address operational seman-
tics and corresponding simulation/debugging activities. We tried their Petri-net
DSLs to debug a safety-critical system and check their ability to address proper-
ties such as: correctness, deadlock-freedom, mutual exclusion and fairness. This
paper presents a critical review and lessons learned from this study and provides
formal alternatives, based on the B method and CSPE| process algebra, which
are well-established techniques allowing interactive animation on the one hand
and reasoning on the behaviour correctness, on the other hand.

Section |2 describes the DSL on which we have built our experimental study
and gives an overview about tools of our benchmark. Section [3| applies and com-
pares algorithms as they are encoded in existing works for debugging a safety-
critical model from the domain expert point of view. In section [d we provide a
formal solution for the definition of execution semantics. Finally, section 5] draws
the conclusions and the perspectives of this work.

2 The Petri-net DSL

In this paper, our case study is that of running Petri-nets. Petri-net is a visual
language used for modeling concurrent systems. Its mathematical foundations
inspired by the graph theory allow formal calculus about safety properties. The
choice of this DSL is motivated by the fact that it was widely addressed by the
research works interested in modeling and debugging techniques. This section
presents structural and contextual constraints of this DSL as well as its execution
semantics and defines a simple safety-critical Petri-net example.

2.1 Structural and contextual semantics

Figure [1] shows the Petri-net meta-model as considered by [I[f] It is composed
of three meta-classes: Net (the root class), Place and Transition. These classes
are linked by four relationships: places, transitions, input and output.

4 http://gemoc.org/

® CSP: Communicating Sequential Processes.

5 The ecore file can be found at: https://github.com/gemoc/petrinet /blob/master/
petrinetvl /fr.inria.diverse.sample.petrinetvl.model/model/petrinetvl.ecore

https://github.com/gemoc/petrinet/blob/master/petrinetv1/fr.inria.diverse.sample.petrinetv1.model/model/petrinetv1.ecore
https://github.com/gemoc/petrinet/blob/master/petrinetv1/fr.inria.diverse.sample.petrinetv1.model/model/petrinetv1.ecore

Dependability of Model-Driven Executable DSLs 3

D Net

1 name : EString

[}

[0.*] places [0.*] transitions

[1.X] input
E} Transition
1 name : EString 3 name : EString
1 tokens : Integer [1.#] output

Fig. 1. Petri-nets meta-model

This meta-model defines structural properties of a given Petri-net. For in-
stance, a Transition must be linked to at least one input place and one output
place. Attribute tokens represents the number of tokens in a place: it is mono-
valuated, optional and without a default initial value. The various references of
this meta-model do not admit repetitions. Note that the meta-model is taken
from [I] and it is presented without any modification. Furthermore, the DSL
must comply with the following contextual invariant written in OCL:

context Place inv Token_Is Natural: self.tokens > 0

For illustration we use the simple Petri-net of Figure [2] which is dedicated to con-
trol traffic lights in a crossroads. This model deals with a safety-critical system
since failures may lead to loss of life due to accidents that it may cause.

start1 start2

green1 green2

t1 t2
red1 .) <>red2
K

orange orange2

end1 end2

Fig. 2. Traffic light controller in Petri-nets (V1)

The domain expert needs then to have confidence in the provided operational
semantics of the Petri-net DSL in order to prove that his model guarantees safety
properties such as:

— correctness: asserts that the system does not exhibit bad behaviors, where
invariants (structural or contextual) are violated.

4 Akram Idani

— deadlock-freedom: states that the traffic lights can’t be blocked in a state in
which no progress is possible

— mutual exclusion: states that lights in a road intersection cannot enter simul-
taneously their critical sections (critical sections are states green and orange
in our example).

— fairness: requires that the system gives fair turns to its components (in our
example both lights must be able to function).

Model of ﬁguredeals with two traffic lights (Light A and Light B) which are
to be placed in two roads that intersect. Light A and Light B are respectively
controlled by the left hand-side and the right hand-side of this figure. Every
traffic light sequentially switches from Green to Orange and then to Red, in an
infinite loop. This Petri-net model shows concurrent evolutions of traffic lights
without any synchronisation between them. Finally, the current state of this
model assigns red to Light A and green to Light B.

In this paper we apply existing MDE approaches [TI8TO/TT], with associated
implementations, in order to debug the traffic light controller especially from the
domain expert point of view. The intention is to check the ability of these MDE
tools to address safety properties as those mentioned above.

2.2 Execution semantics

Basic Petri-nets execution semantics are defined by transition firing that holds
when a transition satisfies an enabledness property. To check this property, ex-
isting MDE techniques call a query defined as:

query isEnabled(t : Transition) : Boolean =
t.input->forAll(p : Place | p.tokens > 0)

This query returns true if attribute tokens is greater than 0O for each in-
put place of transition t, false otherwise. Algorithm of figure [3] taken from [IJ,
describes how a Petri-net runs. This algorithm chooses non-deterministically a
transition t (called tepapred) from the set of transitions that satisfy the above
property and then calls operation fire(t). As a result, the number of tokens in
the input places of t is decreased (operation removeToken) and the number of
tokens in the output places is increased (operation addToken). Modifications of
tokens, done at every call to operation fire, evolve the set of enabled transitions
and then the algorithm may loop or stop when this set becomes empty.

2.3 Benchmark overview

In order to address safety properties using existing MDE-based Petri-net DSLs,
our study applies various approaches which are based on different languages
(QVT, Kermeta and fUML). In the remainder, we call these approaches respec-
tively PNetqvT, PNetkermeta and PNeteumr,-

Dependability of Model-Driven Executable DSLs 5

Algorithm 1: run

Input:

n : the Net object to run
[1] begin
2] | tepabled ‘€ {t € n.transitions | isEnabled(t)}
(3] | while tq, pleq 7 null do

4l 7e(tenabled)
5] tenabled ‘€ 1t € n.transitions | isEnabled(t)}

Algorithm 2: fire
Input:
t : the Transition object to fire
[1] begin
[2] | foreach p € t.input do
3] LremoveToken(p)

[4] | foreach p € t.output do
5] LaddToken(p)

Fig. 3. Running a Petri-net [I]

1. PNetqyr [II]: QVT (Query/View/Transformation) is an OMGIZ] standard
for model transformations. QVT defines: QVT-Relations and QVT-Core
which are declarative languages but at two different levels of abstraction, and
QVT-Operational which is an imperative language. In [I1], the authors used
QVT-Relations which is the high-level language of QVT extending OCL and
its semantics with imperative features. Unfortunately, there is a lack of tools
supporting QVT-Relations. Indeed, the tools that we found are either out of
date (Medini QVT) or proprietary (ModelMorf). Then, for our benchmark
needs, we encoded a variant of rules proposed by [II] in QVT-Operational
using the Eclipse EMF framework.

2. PNetkormeta [1]: Kermeta [7] is a language workbench that involves different
meta-languages for abstract syntax (aligned with EMOF []), static seman-
tics (aligned with OCL) and behavioural semantics (via an action language
also called Kermeta). In [I], the Gemoc studio was applied together with
the Kermeta language to define the Petri-net DSL and debug its execution
using an animation technique. In our benchmark we used source-code issued
from the Gemoc website: |https://github.com/gemoc/petrinet/blob/master/
petrinetvl/.

3. PNetymr, [8I0]: fUML is an OMG standard that defines the execution se-
mantics of a subset of UML 2.3. The standard applies, in the form of pseudo
Java-code, a basic virtual machine enabling UML models using elements
comprised in the fUML subset to be executed. [I0] proposes the xMOF
tool which integrates f{UML with MOF to enable the specification of the
behavioural semantics of DSMLs in terms of fUML activities. For our exper-

” OMG: Object Management Group (https://www.omg.org).

https://github.com/gemoc/petrinet/blob/master/petrinetv1/
https://github.com/gemoc/petrinet/blob/master/petrinetv1/
https://www.omg.org

6 Akram Idani

iments we used the open-source DSL, provided at: https://modelexecution.
org/moliz/xmof /.

The above tools use the Eclipse Modeling Framework (EMF), which makes
easy their integration and the analysis of the Petri-net DSLs that they provide
within a unified framework. Note that their underlying approaches agree on
operations fire, addToken and removeToken. However, they differ from each other
by: (1) the level of abstraction depending on (meta-)programming languages, (2)
the semantics associated to the non-deterministic choice of enabled transitions,
and (3) the execution engine.

3 Debugging the traffic-light model

In this section we apply and compare the works of our benchmark for debugging
the traffic-light model from the domain expert point of view.

3.1 Results

Starting from the initial state of figure [2, PNetqyT, PNetrymr, and PNetkermeta
produced the same execution trace (figure |4)) showing that only Light A is func-
tioning. Curiously the transition firing sequence was: (startl ; t1 ; endl)™.

[

Fig. 4. First execution of the traffic light Petri-net

end1

Often the end user or the domain expert does not have any knowledge about
how the Petri-net semantics are encoded, that is why we tried again these tools
starting from a more intuitive initial state where lights are set to red. In this
second execution, PNetkermeta and PNeteunr, have had the same behaviour than
that they exhibited in the previous case but with Light B left in state Red.
PNetqvT produced a different trace, presented in figure

(startl ; t1 ; start2 ; endl) ; (startl ; t1 ; endl)"

In this behaviour light B is switched to green after Light A passed to orange
and then after firing transition endl the system is engaged in a loop similar
to that of figure [4] Based on these behaviours it is difficult to conclude about
safety properties: dead-lock freedom, mutual exclusion and fairness. In the first
execution of PNetkermeta and PNetgunr, both lights reached their critical sections
together (middle state of figure , which violates the mutual exclusion property.
Nonetheless, from the second execution one can conclude that this property is

https://modelexecution.org/moliz/xmof/
https://modelexecution.org/moliz/xmof/

Dependability of Model-Driven Executable DSLs 7

A B A B

A B
m start1 t1
e
A B
end1 % start2

A B A B A B
= ‘Eéllégl) ‘Egilégi
—_— —>

end1

Fig. 5. Second execution of the traffic light Petrinet

satisfied, which is obviously contradictory with the first execution. In the same
sense, these two executions show a dead-lock freedom since the corresponding
traces did not reach a blocking state, but they show too that the fairness property
is not guaranteed since Light B didn’t evolve at all, which is also somehow
contradictory. Having these behaviours and considering that the semantics of
Petri-nets is well-defined, we believe that it is difficult for the end-user — who
should be in our case an expert in Petri-nets and formal methods — to adopt
these tools and apply them to model a safety-critical system.

3.2 Analysis

In order to explain these behaviours we analysed the source code of our bench-
mark tools and we found that they do not choose in the same way the enabled
transition. Indeed, in our reference algorithm the choice of the transition to fire
is non-deterministic, which is not the case for these tools.

Indeterminism in PNet;yyr, and PNetkermeta: PNetruyn and PNetkermeta
applied a deterministic principle in which the first transition satisfying query
isEnabled is fired. In PNetgypy, [I0] it is stated that:“The run() operation re-
peatedly determines a list of enabled Transitions, . .., and calls fire() for the first
Transition in this list.”. PNetkermeta source code uses the following instruction
in the context of class Net:

transitions.findFirst[t|t.isEnabled]

The limitation is that collection transitions issued from class Net is filled
sequentially depending on the order on which the modeling elements are created
by the designer. In fact, in EMF references are typed by the EList data structure
whose semantics are different from the Set data-structure. Actually for figure
we created the left hand side (that of Light A) before the right hand side (that of
Light B) and hence we get a malfunction of Light B. Based on this observation

8 Akram Idani

we changed the order of transitions in the XMI file of the model, and then we get
a different behaviour. We think that it is not a judicious choice to condition the
DSL behaviour by the order on which modeling elements are created because it
may be confusing for the domain expert. Moreover, DSL behaviour variations
depending on the XMI file content would not reflect at all the behaviour of the
target system, which weakens the debugging functions dedicated to a Petri-net
based safety-critical controller.

Indeterminism in PNetqyr: In PNetqyT, the enabled transition is provided
by the following OCL-based query:

query getActivated(net: Net): Tramsition {
net.transitions -> any(trans | isActivated(trans))

}

Semantics of the “any” construct in OCL [3] (section 11.9, page 177) are defined
as: “Returns any element in the source collection for which body evaluates to
true. . . If there are one or more elements for which body is true, an indeterminate
choice of one of them is returned”. In the OCL reference manual the operator
“any” is rewritten as follows:

Set->any(iterator | body) =
Set->select(iterator | body)->asSequence()->first()

Conversion from Set to Sequence is non-deterministic because type set does not
cover ordering. However, the EMF/OCL package uses the java structure Hash-
Setﬁ for the OCL type Set. Unfortunately, elements of a HashSet are dispersed
by means of a hashing function which is called every time a modification opera-
tion (e.g. add, remove) is applied to the HashSet. Since in our example, the set
of transitions is never modified, then this dispersion is not recomputed and the
asSequence () operation always produced the same result. The HashSet disper-
sion produced from our initial Petri-net (figure [2) is:

[startl,tl, start2, end2, endl, t2]

This dispersion allows to understand the weird behaviours of the traffic light.
Indeed, in the initial state, the set of enabled transitions gathers startl and ¢2
and hence asSequence()->first() gets startl. Then, the same algorithm is
applied producing a call to t1 followed by endl. Transition 2 would never be
fired because in this dispersion it appears after transition end1l which brings back
the model to the initial state. The similarity between the output of PNetqyr
and that of both PNetsyyr, and PNetkermeta Wwhen Light A is red and Light B
is green is hence a pure luck. This behaviour is not only unsuitable towards a
non-deterministic executable DSL but also dangerous because the failure comes
from the execution engine not from the semantics. This failure may reduce the
confidence that a domain expert may have in the DSL execution engine. Indeed,
besides human errors, it is known that execution engines are the most critical
parts in safety-critical systems; that is why several standards exist in order to
reduce their capabilities to controllable structures and functions.

8 HashSet is an implementation of interface Set in Java.

Dependability of Model-Driven Executable DSLs 9
4 Formal DSL semantics: the Meeduse technique

The disparity between execution tools leads to behaviours that are conformant
to the semantics specified by their execution models but may be far from the
expected behaviour in accordance with the domain expertise. This is an impor-
tant problem since the same model may not be executed in the same way on
different tools even for deterministic structures. In fact, when designing a model
via a given DSL tool, the domain expert focuses on debugging his model rather
than debugging the DSL semantics provided by the MDE expert.

We propose an alternative definition of the Petri-net semantics using Meeduse
[6], a tool that we developed in order to mix the formal B method and EMF-
based DSLs. The use of a well-established formal approach assisted by provers
and model-checkers, guarantees the consistency of the Petri-net DSL and its
conformance to the expected behaviour. This formal reference model allows then
to establish what goes well and wrong in the considered benchmark and can be
useful for further improvements of existing DSL definition tools.

4.1 Functional model

In order to get a functional B specification conformant to the Petri-net meta-
model, Meedusﬂ [6] translates the meta-model into a correct by design B spec-
ification. Figure [6] gives the heading part of the generated B machine.

1. MACHINE

2 nets

3. SETS

4 NET; PLACFE; TRANSITION
5. ABSTRACT_VARIABLES

6 Net, Place, Transition,

7 places, input,

8 output, transitions, Place_tokens

Fig. 6. Heading part of the Petri-nets machine

Every meta-class leads to an abstract set (e.g. TRANSITION) and an ab-
stract variable (e.g. Transition) which respectively represent the possible in-
stances and the existing instances of the meta-class. Associations and class at-
tributes lead to variables (e.g. places, transitions, etc). The invariant properties
generated by Meeduse are provided in figure [7}

This invariant covers structural properties defined by multiplicities and the
optional/mandatory character of attributes, as well as contextual constraints like
the Token_Is Natural invariant. For example, predicates from line (18.) to line
(23.) of figure[7] translate multiplicities 1. . * associated to references input and
output. Attribute tokens, which is single-valuated, optional and defined over the

9 Meeduse: |http://vasco.imag.fr/tools/meeduse/

http://vasco.imag.fr/tools/meeduse/

10 Akram Idani

9. INVARIANT

10. Net € F (NET)

11. A Place € F (PLACE)

12. A Transition € F (TRANSITION)

13. A places € Place + Net

14. A input € Place < Transition

15. A output € Place +» Transition

16. A transitions € Transition + Net

17. A Place_tokens € Place + NAT

18. A ran(input) = Transition

19. A ran(output) = Transition

20. AV transition - (transition € ran(input)
21. = input ~! [{transition}] # 0)

22. AV transition - (transition € ran(output)
23. = output ~! [{transition}] # 0)

Fig. 7. Invariant of the Petri-nets machine

set of natural numbers, is translated into a partial function from set Place to the
B type NAT (line (17.)).

Tools such as those of our benchmark produce an implementation from a
meta-model gathering all basic operations (setters, getters, etc) and Meeduse
generates a B machine gathering similar basic operations but which are written
in a theory (set theory, first order predicate logic and generalized substitutions)
allowing to carry out proof of correctness. Figure |8 shows the basic setter of
attribute tokens.

Place_SetTokens(aPlace, val) =
PRE
aPlace € Place N\ val € NAT
THEN
Place_tokens :=
({aPlace} < Place_tokens) U {(aPlace — val)}
END

Fig. 8. Basic setter of attribute tokens

For this specification, Meeduse produced 24 operations and the AtelierB
(http://www.atelierb.eu/en/) prover generated 74 proof obligations (POs) for
which it was able to automatically prove 62. The 12 other POs were proved
manually without improvements of the B specifications.

4.2 Execution operations

Execution semantics often introduces complex modifications of the domain model.
They may create or destroy objects, modify relationships between these objects
and also update several class attributes. We are then afraid that the difficulty in

http://www.atelierb.eu/en/

Dependability of Model-Driven Executable DSLs 11

applying executable DSLs in safety-critical systems goes beyond the problem of
indeterminism exhibited from our benchmark. We need a clear separation of con-
cerns regarding properties to verify: (1) that of the meta-model with associated
modeling operations,(2) that of the execution utility operations (e.g. addToken
and removeToken), and (3) that of the coordination mechanism (e.g. operations
fire and run of figure |3)).

We introduce the execution semantics of the Petri-net DSL by a set of B oper-
ations shared in a machine that includes the functional machine. As the Petri-net
running algorithm iterates over input and output places of a transition, we add
operation getPlaces (figure @ in order to return these sets given a transition tt.
Operation getEnabled is a formalisation of query isEnabled presented in section
[2:2] The enabledness property of a transition tt should not only be based on the
positive value of tokens (relation Place_tokens) for all input places (input=![{tt}])
but must also take into account the upper limit of this attribute for all output
places (output™![{tt}]):

(P1) Place_Tokens[input=*[{tt}]] N {0} =0
(P2) Place_Tokens[output~![{t}]] N {MAXINT} =0

Precondition (P1) is not sufficient because we would like to safely increase
the number of tokens in output places. Without precondition (P2), the Petri-
net controller may then reach a state in which a transition is enabled, and the
tokens in its input places are consumed without producing tokens in the output
places. This would lead to an inconsistent Petri-net because consumption and
production of tokens should not be dissociated. Both preconditions are then
required in order to be able to call both addToken and removeToken when a
transition is enabled.

tEnabled + getEnabled =

ANY it WHERE sre, trg <— getPlaces(tt) =
tt € Transition A PRE
{0} N Place_tokens[input =1 [{tt}]] = 0 A tt € Transition
{MAXINT} N Place_tokens[output = [{tt}]] = 0 || THEN

THEN sre := input ~' [{tt}]
tEnabled := tt || trg := output ~! [{tt}]

END; END;

Fig. 9. Operations getEnabled and getPlaces

Figure |10 gives the B specification of operation addToken (operation remove-
Token is somehow similar). Note that AtelierB discharged four proof obligations
from this machine (two POs for the setter call, and two additional POs for the
well-definedness of Place_Tokens(pp)) and it was able to prove them automati-
cally.

12 Akram Idani

addToken(pp) =
PRE
pp € Place N\ pp € dom(Place_tokens) N
Place_tokens(pp) < MAXINT
THEN
Place_SetTokens(pp, Place_tokens(pp) + 1)
END :

Fig. 10. Operation addToken

4.3 Semantics coordination

In order to keep reasoning at a high abstraction level, operations run and fire
presented as algorithms in figure |3} are defined as CSPE processes that coordi-
nate the operations of the execution semantics. The process algebra CSP is an
event-based formalism that enables description of patterns of system behaviour.
In [2] combination of CSP and the B method is defined and integrated within
the model-checker ProB [J]. This formalism is then useful for executable DSLs
due to its abstraction capabilities and also thanks to the tool availability.

Figure shows the CSP specification of the Petri-net running algorithm.
This algorithm is composed of four processes: RUN, FIRE, CONSUME and
PRODUCE. Process RUN (line 1.) is a recursion defined by a sequential composi-
tion with the prefixed process FIRE. In this sequence channel getEnabled?trans
is a call to the B operation getEnabled whose output value is registered in
variable trans. The variable is then transmitted to process FIRE. Concretely,
variable trans represents an enabled transition provided non-deterministically
by operation getEnabled. The simulation of process RUN continues indefinitely
or stops when the system reaches a deadlock.

MAIN = RUN
RUN = getEnabled?trans — FIRE(trans) ; RUN
FIRE(trans) =

getPlaces!trans?input?output — (
CONSUME(input) ; PRODUCE (output)

CONSUME(input) = |||[zcinpuyyremoveTokenlz — SKIP
PRODUCE((output) = |||[zeoutpusjaddTokenlz — SKIP

® N oA W=

Fig. 11. CSP formalisation of run and fire
Process FIRE applied to a transition trans is a sequencing of processes CON-
SUME and PRODUCE preceded by the simple action prefix:
getPlaces!trans?input?output

This action is a call to the B operation getPlaces on transition trans in order
to get its input and output places, which are further transmitted to processes

19 CSP: Communicating Sequential Processes [f].

Dependability of Model-Driven Executable DSLs 13

CONSUME and PRODUCE. The objective is to apply operations removeToken
and addToken to all elements of sets input and output. Notation ||[,esOplw
represents a replicated interleaving which applies all possible combinations of
Op having the various valuations of parameter = taken from set S.

4.4 Debugging the traffic light

In order to debug the traffic light via our formal semantics we have two pos-
sibilities using Meeduse: (1) interactive animation, and/or (2) model-checking.
Meeduse integrates ProB and EMF together in order to take benefit of the vi-
sualisation capabilities of MDE tools such as Sirius and GMF for DSLs, and the
animation and model-checking functions of ProB. In Meeduse, EMF and ProB
are continuously synchronised during the animation process.

The right hand side of figure [12| provides the ProB view and the left hand
side our EMF/Sirius modeler. The ProB view shows CSP guided animation. In
the current state of the model two operations are enabled: startl and t2. In
interactive animation, depending on the choice done by the user, the tool fires
the selected transition and then changes the model according to the formal B
specification. For every animation step, Meeduse gets the B machine state from
ProB and translates it back to the EMF model in order to update the graphical
view. As presented in figure ProB offers model-checking functions allowing
to find deadlocks, invariant violations and reachability of CSP goals.

CIK MR MR A AR ® ® Model Check:
& lights UPERATLUNS
v - tEnabled <-- getEnabled = Model Check Cancel |
v &iv || Ov v | @ 08| Gr [QU Q100% |l [E] ANY tt WHERE . \
tt : Transition & Search Strategy “
{0} A\ Place_token[input~[{tt}]] = {} & Find Deadlocks
start1 start2 {MAXINT} /\ Place_token[output~[{tt}]] =
THEN Find Invariant Violations
tEnabled := tt
END; X
Find Event on "goal® CSP Channel
greent green2) ;;E: trg <-- getPlaces(tt) = Stop when All OPERATIONS Covered
£ : Transition Search for New Errors
THEN . Checked States: 3 (50 %)
1 2 src = input~[{tt}])
red1(@ red2 11 trg :e output-L{tt}] Total Distinct States: 5
END; Total Transitions: 4
Ln 17, C¢
lorange1 orange2 =
9 [OK1| State Properties T [Enabled operations (2) | 4| %
[Place_token(red1) = 1 [getEnabled-->start1
|Place_token(green1) = 0 jgetEnabled-->t2
Place_token(orange1) = 0
Place_token(green2) = 1
end1 end2 IPlace_token(orange2) = 0
IPlace_token(red2) = 0

Fig. 12. Integration of ProB within EMF

Mutual exclusion: A traffic light enters its critical section after enabling tran-
sition start and it leaves it by transition end meaning that the critical section
includes states Green and Orange. In order to check this property for our petri-
net model, we add the following invariant to our B specification and we ask ProB
to find invariant violations and produce the corresponding transition sequences.
Contrary to the observation issued from our benchmark, ProB quickly found the
invariant violation showing that this property is not respected.

14 Akram Idani

1 € Place_tokens[{green1, orangel}]
= Place_tokens[{green2, orange2}] = {0}

A 1 € Place_tokens[{green2, orange2}|
= Place_tokens[{greenl, orangel}] = {0}

Fairness: To check this property we apply a parallel composition of process
RUN with the process FAIRNESS defined in figure line (12.). This process
leads to two possible traces: (stepl ; step2 ; goal) and (step2 ; stepl ; goal).
Channel stepl (respectively step2) is produced from process FIRE when guard
trans = endl (respectively trans = end2) holds. The objective of this speci-
fication is to reach goal STOP when the system produces a trace where both
transitions endl and end2 are fired by the RUN process.

1. MAIN = RUN |[{stepl, step2}]| FAIRNESS

2. RUN = getEnabled?trans — FIRE(trans) ; RUN

3. FIRE(trans) =

4. getPlaces!trans?input?output — (

5. CONSUME (input) ; PRODUCE (output)

6.)

7. ((trans = endl) : stepl — SKIP

8. [] (trans = end2) : step2 — SKIP

9. [] (trans & {endl,end2}) : SKIP)

10. CONSUME(input) = |||zcinputjremoveToken!z — SKIP
11. PRODUCE((output) = |||jzcoutpurjaddTokenlz — SKIP
12. FAIRNESS = (stepl — SKIP ||| step2 —SKIP) ; goal — STOP

Fig. 13. Fairness checking with CSP

ProB successfully found the expected sequences leading to the goal and show-
ing that the system gives fair turns to lights A and B. However, given that the
running algorithm is non-deterministic, it would be interesting to seek for the
existence of loops where only one light runs. For this purpose, we can override
the getEnabled operation in process RUN as follows:

RUN = FIRE(startl) ; FIRE(¢1) ; FIRE(endl) ; RUN

Given this CSP rule, ProB explored all possible situations without finding
goal STOP, which shows that the system may stay running without evolutions
of Light B. This proof exhibits a weak fairness from the model.

5 Conclusion

PNetqvT gave the better abstraction level however it suffers from limitations
of the misuse of non-determinism. PNetkermeta and PNetguyg, have had a con-
trollable deterministic behaviour however this choice makes them quite distant
from the original Petri-net semantics. The Petri-net DSL is a “tiny” DSL and it

Dependability of Model-Driven Executable DSLs 15

does not allow to present all possibilities of a proof-based approach, but it was
sufficient to exhibit several failures from our benchmark. Indeed, in addition to
the problem of indeterminism, these tools include other unsafe behaviours due
to: the implicit initialisation of the optional attribute tokens, and also the uncon-
trolled incrementation of this attribute that may produce an integer overflow.
Similar simple failures in real-life critical systems have had disastrous conse-
quences. To cope with these limitations, our solution applies a formal model in
order to debug the DSL using the ProB animator and model-checker.

Often, in classical development processes, the use of a formal method with
proofs is not widespread because it seems to create an overhead for the de-
veloper. The Meeduse approach described in this paper targets safety-critical
systems where formal reasoning is widely applied even if it requires good skills
in mathematics. Integration of a DSL-based solution to this field is interesting
since it provides a way for rapid-prototyping of a system’s behaviour without
a loss of formal proofs. The alliance, favored by Meeduse, between executable
DSLs and a formal method such as B, allows to reach a high level of abstraction
with a good mix between expressiveness and precision. We believe that this is a
promising technique to deal with the dependability of safety-critical systems.

References

1. Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.: Omniscient de-
bugging for executable dsls. Journal of Systems and Software 137, 261-288 (2018)

2. Butler, M.J., Leuschel, M.: Combining CSP and B for specification and property
verification. In: FM 2005. LNCS, vol. 3582, pp. 221-236. Springer (2005)

3. Group, O.M.: Object Constraint Language (OCL) 2.4 Core Specification.
https://www.omg.org/spec/OCL/ (2014)

4. Group, O.M.: Meta Object Facility (MOF) 2.5.1 Core Specification.
https://www.omg.org/spec/MOF/2.5.1/ (2015)

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

6. Idani, A., Ledru, Y., Vega, G.: Alliance of model driven engineering with a proof-
based formal approach. Innovations in Systems and Software Engineering (ISSE)
(2020). https://doi.org/10.1007/s11334-020-00366-3.

7. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of Meta-Languages and its Implementation in the Kermeta Language Workbench.
Software and Systems Modeling (2013)

8. Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differencing utilizing be-
havioral semantics specifications. In: 17th Int. Conference Model-Driven Engineer-
ing Languages and Systems. LNCS, vol. 8767, pp. 116-132. Springer (2014)

9. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) Formal Methods. pp. 855-874. LNCS 2805, Springer (2003)

10. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: Towards xmof: Executable
dsmls based on fuml. In: International Conference on Software Language Engineer-
ing - SLE. LNCS, vol. 8225, pp. 56-75. Springer (2013)

11. Wachsmuth, G.: Modelling the operational semantics of domain-specific modelling
languages. In: Generative and Transformational Techniques in Software Engineer-
ing IL. pp. 506-520. Springer (2008)

	Dependability of Model-Driven Executable DSLs

