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Abstract. In the railway field, graphical representations of domain con-
cepts are omnipresent thanks to their ability to share standardized infor-
mation with common knowledge about several railway mechanisms: track
circuits, signalling rules. . . This paper proposes a domain specific app-
roach for railway systems modeling and validation by combining the
Model-Driven Engineering (MDE) paradigm and a formal method. First,
an example of a graphical DSL is defined thanks to MDE tools, and
then the formal B method is used to define its underlying operational
semantics and to guarantee the correctness of the model’s behaviour with
respect to its safety properties. Our approach is assisted by the Meeduse
tool which animates and visualizes execution scenarios of domain mod-
els. Starting from a given model designed in the DSL tool, Meeduse asks
ProB to animate B operations and gets the reached state by means of
B variables valuations. Then, it translates back these valuations to the
initial DSL resulting in automatic modifications of the domain model.
Our approach allows a more pragmatic domain-centric animation than
current visual animation techniques since the resulting DSL tool allows
domain experts, who are not necessarily trained in formal methods, to
design and validate by themselves the various domain models.

Keywords: MDE · DSL · Formal methods · Visual animation

1 Introduction

In railway control and safety systems, the application of formal methods is
becoming a strong requirement as recommended by CENELEC EN 50128 stan-
dard1. However, while formal methods provide solutions to the verification prob-
lem, human errors may lead to erroneously validate the specification, and hence
1 https://standards.globalspec.com/std/13113133/en-50129.
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to produce the wrong system. Indeed, even if formal proofs succeed, a formal
specification can be wrong for two main reasons [7]: misunderstandings of the
users needs or errors in the expression of these needs. In order to deal with these
shortcomings, several formal tools provide graphic animation and visualization
techniques [8,14,17] which help in the exploration of alternative behaviors in
a step-by-step approach. This technique favours the communication between a
formal methods engineer and the domain expert by using domain specific visu-
alizations which is crucial during the validation activity.

Unfortunately, mapping a given graphical representation to the formal spec-
ification is a rather time-consuming task (several days or several weeks) and the
creation of custom visualizations is often done when the formal model reaches an
advanced stage during the modeling process. This is counterproductive since the
identification of misunderstandings often leads to enhancements of the formal
specifications which in turn impacts the implementation of the visualization. Fur-
thermore, the domain specific visualizations are created by the formal methods
engineer who would like to remedy the poor readability of his own specifica-
tions and hence, the resulting visualizations may lack of real-user perspective.
In [3], Bjørner states that before we can formulate requirements, we must under-
stand the [application] domain, meaning that domain specific representations are
required before starting to think about formal models. In a pragmatic approach,
these representations should be provided by the domain expert who has a greater
knowledge of the application domain than the formal methods engineer.

In the railway domain, specific representations (textual or graphical) of
domain concepts are omnipresent thanks to their ability to share standardized
information with common knowledge about several railway mechanisms: track
circuits, signalling rules, interlocking systems. . . Nowadays, there are more and
more attempts to define DSL tools [12,20,22], based on these specific representa-
tions, allowing the domain expert himself to provide useful models to the software
system engineer. In this paper, we propose a formal tool-based domain specific
approach that defines a DSL for railroad topologies with a concrete graphical
syntax and associated formal semantics. The DSL tool is developed in a well-
known Model Driven Engineering paradigm (MDE) based on EMF [19] and it is
intended to be used by the domain expert in order to design interesting business
models. The formal part of our approach is assisted by the Meeduse tool2 which
automatically translates the DSL meta-model into an equivalent B specification
[1] gathering the structure of the meta-model as well as basic operations like con-
structors, destructors, getters and setters. The operational semantics of the DSL
are then defined using the formal B method which guarantees the correctness of
the model’s behavior with respect to its invariant properties. Meeduse allows the
animation of underlying execution scenarios using the ProB tool [16]. Starting
from a given business model, it asks ProB to animate B operations and retrieves
the reached state by means of B variables valuations. Then, Meeduse translates
back these valuations to the initial DSL resulting in automatic modifications of

2 http://vasco.imag.fr/tools/meeduse/.
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A Domain Specific Approach for Railway Systems 3

the business model which gives rise to a more pragmatic domain-centric anima-
tion than current visual animation techniques.

Section 2 provides the static semantics of a railroad DSL done thanks to
the MDE paradigm. In Sect. 3, we show how our DSL is enhanced by a formal
specification in order to define its operational semantics. Finally Sect. 5 draws
the conclusions and the perspectives of this work.

2 A Simple Railroad DSL

The adoption of model-driven engineering (MDE) paradigms in industry is
increasing because MDE is assisted by numerous tools for creating and exploit-
ing domain models such as: EMF3, Xtext4, Sirius5, GMF6, . . . These tools had
several successful applications thanks to the solutions they provide for rapid-
prototyping of DSLs. The application of MDE in order to define DSLs for railway
systems promotes readability of these systems and enables stakeholders without
experience in programming or formal languages, like certification authorities,
to create the models as long as they possess domain knowledge. In MDE, the
definition of a DSL follows three steps:

1. The definition of model’s semantics via a meta-model which is a central arte-
fact because it allows interoperability between tools such as language analy-
sers (e.g. Xtext [2]), code generators (e.g. Acceleo [6]), and also model trans-
formation tools (e.g. ATL [13]);

2. The expression of contextual constraints using the OCL language in order to
enhance the DSL semantics with invariant properties which are not covered
structurally by the meta-model;

3. The creation of a palette of concrete syntax elements (textual or graphical)
and their relationships with the meta-model.

2.1 Meta-model Definition

Figure 1 gives a simplified meta-model of a DSL dedicated to railroad topologies
and signalling systems. The DSL features three main concepts: trains (class
Train), sections of a railway track (class Portion), and train movement authority
(class MA) which are authorizations given to a train in order to move to a given
portion. In this paper, we make some simplifying assumptions such as association
between Train and Portion considering that a train occupies a single portion,
and then the whole train moves instantly from one portion to another. We also
assume that switches move instantly (in practice, this takes about ten seconds).
These simplifications do not impact our approach and one could lift them at the
price of a more complicated model.
3 EMF: https://www.eclipse.org/modeling/emf/.
4 Xtext: https://www.eclipse.org/Xtext/.
5 https://www.obeo.fr/fr/produits/Eclipse-sirius.
6 http://www.Eclipse.org/modeling/gmp/.
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Classes Light and AutoTrStop define a signalling equipment with traffic lights
(in state on or off) and automatic train stop mechanisms which may be armed
or disarmed. These devices are associated to the portion where they are located.

Fig. 1. Simplified meta-model of the RailRoad DSL

2.2 Concrete Syntax Definition

There exists several tools dedicated to the instantiation of meta-models. In this
work we used Sirius7 because its main advantage in comparison with other EMF-
based modeling tools is its facility to define conditional styles with an OCL-like
syntax. For example, the color representation of a portion would depend on
three states like presented in Fig. 2: free, reserved or occupied. States, free and
occupied depend on the presence or not of a train over the portion. A portion is
called reserved as soon as it is concerned by a movement authority.

Fig. 2. Portion representations depending on OCL expressions

7 https://www.obeo.fr/fr/produits/Eclipse-sirius.
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The proposed concrete syntax of our Railroad DSL is inspired by graphi-
cal representations that we found in several references [9,23,24]. Figure 3 is a
snapshot of the resulting DSL tool showing a railroad under construction by a
domain expert where five track sections are being assembled.

Fig. 3. Railroad under construction in a domain-specific syntax

The meta-model defines three kinds of portions depending on values of asso-
ciations A main, B straight and C divergent. The first kind of portions repre-
sents railroad extremities (e.g. portions 1, 4 and 5) and they refer only to their
next portion through relation A main. The second kind is a middle horizontal
portion like portion 2 that refers to both main and straight portions by means of
relations A main and B straight. Finally, the third kind of portions deals with
switches such as portion 3 which divides into two: track B (linked to the straight
portion) and track C (linked to the diverging portion). The horizontal line rep-
resents the state of the switch, pointing towards the straight (B) or diverging
(C) end. It depends on values of attribute switch in class Portion. In the case
of portion 3, this attribute is set to straight. Two traffic lights are introduced
in this model in order to control the access to portions 2 and 3. Their graphical
concrete representations depend on values of attributes state (on or off) and
direction (even or odd) defined in class Light. An automatic train stop (ATS)
device is also positioned on portion 2 and it is by default disarmed.

Track layout of Fig. 4 is the final model issued from Fig. 3 after hiding portion
connections and where two trains, T1 and T2, are positioned respectively on
portions 1 and 5. In this example, the travelling directions are odd for T1 and
even for T2. Note that directions of trains and portions are independent; they
don’t impact each other. However, the directions of lights are relevant for train
movements. Indeed, trains are concerned by lights which are oriented in the same
travelling direction.

A
u

th
o

r 
P

ro
o

f



6 A. Idani et al.

Fig. 4. A simple railroad model with two trains (Color figure online)

2.3 Contextual OCL Constraints

Meta-models are not powerful enough to represent all static semantics of a given
DSL. In fact, they define context-free models which are models without any other
restrictions than those defined in the meta-model and hence these models are not
necessary conformant to the well-definedness rules required by the application
context. In our example, the usage context of a railroad requires that tracks
follow some rules such as the absence of holes, etc. In order to enhance the static
semantics of our DSL, we use the OCL language which is integrated within EMF
thanks to the OCLinEcore tool. Our OCL rules deal only with structural aspects
of railroads, and basically they define how portions must be linked to each others.
Three main invariants are defined depending on portion kinds: AMainPortion,
BStraightPortion and CDivergentPortion.

Every portion has a successor portion (called main portion) with respect to
association A main in the meta-model of Fig. 1. Invariant AMainPortion is the
well-definedness rule of this association and assesses that given two portions P1
and P2 such that P2 is the main portion of P1, then if P1 and P2 have opposite
directions, then P1 must be also the main portion of P2, otherwise P1 is the
straight or the divergent portion of P2. In Fig. 3 for example, PORTION1 and
PORTION2 have opposite directions then every portion is the main portion
of the other. Based on the same example, PORTION3 is the main portion of
portions PORTION4 and PORTION5 and such that the three portions have the
same direction, then none of PORTION4 and PORTION5 is the main portion
of PORTION3.

Context Portion inv AMainPortion:

(A main.direction <> {direction} implies A main.A main = {self}) and

(A main.direction = {direction} implies

A main.B straight = {self} or A main.C divergent = {self})

Invariants BStraightPortion and CDivergentPortion define rules for asso-
ciations B straight and C divergent. They allow to strengthen invariant
AMainPortion for portions which are not linked via association A main. For
example, if two portions P1 and P2 have opposite directions and such that P2 is
the straight or the divergent portion of P1 then P1 must be either the straight
or the divergent portion of P2.
Context Portion inv BStraightPortion:

self.B straight -> notEmpty() implies
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(B straight.direction <> {direction} implies

B straight.B straight = {self} or B straight.C divergent = {self})
and (B straight.direction = {direction} implies A main.A main = {self})

Context Portion inv CDivergentPortion:

self.C divergent -> notEmpty() implies

(C divergent.direction <> {direction} implies

C divergent.B straight = {self} or C divergent.C divergent = {self})
and (C divergent.direction = {direction} implies A main.A main = {self})

The EMF platform provides a validation mechanism that checks OCL invari-
ants provided a given input model. Figure 4 is a valid model with respect to the
above invariants. This validation is interesting for the domain expert who defines
informally the various management rules and who becomes able thanks to the
tool to check their validity on his own models. Note that railway domain experts
are not intended to write OCL expressions by themselves. In fact, the DSL tool
development is the task of MDE experts who has the ability to define meta-
models with associated static constraints.

2.4 Discussion

This section has shown how the MDE paradigm with associated tools is applied
in order to develop a DSL for the railway domain. At this stage we didn’t yet
start the creation of a formal model contrary to classical techniques where the
development process starts by a formal language. Our approach starts by the def-
inition of a DSL tool like that presented in this section which allows to efficiently
involve the domain expert in the development process.

Thanks to the DSL tool, the domain expert becomes able to provide various
domain representations (e.g. Figs. 4 and 5) and also to check whether the asso-
ciated contextual rules are respected or not. For example, based on the model
of Fig. 4, the domain expert can informally explain that if a train T1 is located
on PORTION1, it cannot move to PORTION2 due to the red light. This would
allow an other train T2 located on PORTION5 to go to PORTION4 after cross-
ing first PORTION3 and next PORTION2 where it will be able to change its
direction. The straight direction of the switch allows T2 to reach PORTION4
when it comes from PORTION2. If train T1 violates the red signal the ATS
should be armed automatically and the train will be stopped over PORTION2.

In general, movements of trains are more difficult to represent than this sim-
ple informal description, because in addition to the complexity of realistic railway
track layouts (like that of Fig. 5) and the corresponding signalling systems, they
also refer to movement authority given by traffic agents to the train drivers. In
order to play useful scenarios from a domain-centric point of view, the DSL must
be enhanced by behavioural aspects showing how routes are assigned to trains
and how these trains can move in a safe (or unsafe) way.
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Fig. 5. Realistic example inspired by [24] (Color figure online)

3 Formal Operational Semantics

Operational semantics of our DSL are structured into several formal models
which are linked using the inclusion mechanism of the B method: (i) a functional
model which is automatically extracted from the meta-model, (ii) a safety-free
model in which train accidents may happen, and (iii) a safe model applying
authorization rules in order to control the train movements and avoid critical
situations.

Our approach, summarized by Fig. 6, first translates the meta-model into a
functional formal B specification using a UML-to-B transformation technique
[10]. Then starting from a given instance of this meta-model, we apply the Mee-
duse tool in order to animate domain-centric scenarios based on the operational
semantics defined in the formal models. The tool injects any valid instance of a
meta-model into the functional specification by applying valuations to its vari-
ables. In Meeduse, animation of B specifications is done using the ProB tool [16].
Meeduse asks ProB to animate B operations and gets the new variable valua-
tions and then it translates back these valuations to the initial graphical model

Fig. 6. Overall methodology
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A Domain Specific Approach for Railway Systems 9

resulting in an automatic visual animation. Demonstration videos of Meeduse
with graphical and textual DSL animation can be found at: http://vasco.imag.
fr/tools/meeduse/.

3.1 Functional Formal Model

In this step we use the B4MSecure platform [10] which translates the structural
aspects of the meta-model as follows:

– A meta-class Class gives an abstract set named CLASS representing pos-
sible instances and a variable named Class representing the set of existing
instances such that existing instances belong to the set of possible instances.

– An enumeration is translated into a enumerated set (e.g. LightState).
– Basic types (e.g. integer, boolean) become B types (Z, Bool, . . . ).
– Attributes and references lead to functional relations.

Figure 7 shows the declarative part of the B specification extracted from
classes Train, Portion as well as the association between these classes. In this
specification single valuated features are represented by partial or total functions
with respect to their optional/mandatory character. For example, the A main
feature of a portion is single-valuated and mandatory (it leads to a total function)
contrary to features B straight and C divergent which are optional (they lead
to partial functions).

Fig. 7. Subset of the generated functional machine

The behavioural part of the functional B machine provides all basic oper-
ations such as getters, setters, constructors and destructors. For example,
operation Train SetTrain position of Fig. 8 is the basic setter of feature
train position associated to class Train in the meta-model. This operation
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Fig. 8. B Setter of feature train position in class Train

puts a train (parameter aTrain) on any portion (parameter aTrain position)
provided that the portion is different from the current train position.

From our meta-model, B4MSecure produced a B specification whose length
is about 900 lines with 29 variables, 73 operations for which the Atelier B prover
generated 127 proof obligations that it was able to prove automatically. In fact,
operations produced by B4MSecure are correct by construction with respect to
the typing invariants generated automatically from the meta-model structure.
The introduction of additional invariants requires improvements of operations
that may violate them. There are two kinds of invariants: those about the railroad
topology, and those that deal with train movements. In this work it is not neces-
sary to use B in order to specify the well-definedness rules like those expressed in
OCL. Indeed, our formal operational semantics focus on train behaviours which
are operations that don’t modify the railroad topology. As domain models are
provided by the domain expert and validated thanks to the EMF validation
mechanism based on OCL constraints, we have the guarantee that trains would
not move over deficient railroads and hence we choose to keep this functional B
machine as simple as possible. Train behaviours will be specified together with
their corresponding invariants in the two other formal specifications defining the
DSL operational semantics. The functional machine provides, on the one hand,
data structures which conform to the meta-model and, on the other hand, util-
ity operations useful for the definition of train routes and movements. Portions
where accidents happen are defined by reference accidents in the meta-model
and the corresponding B structure is variable Portion accidents defined as:
Portion accidents ⊆ Portion. Operation Portion SetAccidents is its basic
update operation (Fig. 9):AQ1

Fig. 9. B Setter for accidents
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3.2 Safety-Free Formal Model

In general, the safety of a railway system is defined by a set of operating rules
that must be followed by railway agents, like stopping the train when the light
is red. Unfortunately several real situations show that human errors (accidental
or intentional) can lead to rule violations and hence to accidents. The safety-free
operational semantics address behaviours which are uniquely governed by the
laws of physics. For example, if physical devices, like ATS in our DSL, are not
actioned in order to block a train, then the train has the ability to move and
may induce accidents. We define the following B operations:
– Portion ChangeSwitch: given a portion aPortion with a switch like POR-

TION3 in Fig. 4 (i.e. aPortion ∈ dom(Portion C Divergent)), this operation
changes the switch direction (straight or divergent), or leads to an accident
if the portion is occupied (TrainOfPortion−1[{aPortion}] ̸= ∅). Figure 10
shows the effect of this operation on PORTION3 starting from two different
initial states: free and occupied by train T1.

– Train ChangeDirection: changes the direction of a train aTrain from even
to odd and vice-versa, or produces an accident if the train is located on a
switch portion (TrainOfPortion(aTrain) ∈ dom(Portion C Divergent)). Our
DSL semantics assume that it is dangerous to change the direction of a train
on a switch. A safe scenario is when the train leaves the switch portion before
it changes its direction, otherwise an accident happens.

– MA AddPortion: adds a movement authority aMA to a portion aPortion pro-
vided that the portion is not already concerned by a movement authority
(PortionMA[{aPortion}] = ∅)8. Considering that aMA is linked to one train,
this operation is useful in order to create train routes.

– Light Switch: switches a light from red to green and vice-versa.
– AutoTrStop Arm: arms and disarms an ATS.
– Train Move: moves a train from a portion P1 to a portion P2 provided that

P1 is not concerned by an accident and also the ATS (if it exists) of P2 is
disarmed. This operation may produce accidents in two cases: derailment if
the train tries to leave a track extremity in the wrong direction, or collision
if the train enters on a portion occupied by an other train.

Fig. 10. Animation of operation Portion ChangeSwitch(PORTION3 ) (Color figure
online)
8 PortionMA is a partial function mapped from the association between classes MA

and Portion.
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For space reasons, in the following we’ll focus only on the specification of
operation Train Move. Given a train aTrain (aTrain ∈Train), this operation is
feasible under two preconditions:

Precondition (Pre1): the current portion is not concerned by an accident, i.e.
it does not belong to set Portion Accidents.

TrainOfPortion(aTrain) ̸∈Portion Accidents

Precondition (Pre2): if the current portion is associated to an ATS then the
ATS has a different direction than the train or it is disarmed.

((TrainOfPortion(aTrain) ∈ ran(ATSOfPortion)) ⇒ (
(AutoTrStop direction(ATSOfPortion−1(TrainOfPortion(aTrain)))

̸= Train direction(aTrain))
∨ (AutoTrStop state(ATSOfPortion−1(TrainOfPortion(aTrain)))=disarmed))

)

Actions of operation Train Move address several situations depending on the
current portion of the train and also the portion to which the train is intended
to move. First we compute, based on two definitions next portion odd and
next portion even, the next portion with respect to the traveling direction of
a train (even or odd) and also to the portion connexions whose semantics were
defined by the OCL invariants. In the following we present only next portion odd
since next portion even is analog.

next portion odd == {p1, p2 | p1 ∈ Portion ∧ p2 ∈ Portion
∧ (p1 ̸∈ dom(Portion B straight)

⇒ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1)))
∧ ((p1 ∈ dom(Portion B straight) ∧ p1 ̸∈ dom(Portion C divergent))

⇒ ((Portion directionOfA(p1) = odd ∧ p2 = Portion B straight(p1))
∨ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1))))

∧ (p1 ∈ dom(Portion C divergent)
⇒ ((Portion directionOfA(p1) = odd

∧ ((Portion switch(p1)=straight ∧ p2 = Portion B straight(p1))
∨ (Portion switch(p1)=divergent ∧ p2 = Portion C divergent(p1)))
∨ (Portion directionOfA(p1) = even ∧ p2 = Portion A main(p1)))))

}

Given the railroad of Fig. 4, the application of relations next portion odd and
next portion even to PORTION3 gives respectively PORTION4 and POR-
TION2. Relation giving all next portions is thus a partial function defined as:

next portion == {dd, np | dd ∈ Direction ∧ np ∈ Portion &→ Portion
∧ (dd = even ⇒ np = next portion even)
∧ (dd = odd ⇒ np = next portion odd) }

Definition (Def1): curr portion is the portion on which aTrain is positioned:

curr portion = TrainOfPortion(aTrain)
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Definition (Def2): nxt port is the portion to which aTrain should move:

nxt port = (next portion(Train direction(aTrain)))(curr portion)

Condition (Accident1): defines a situation where the train derails.

(Train direction(aTrain) = even ∧ curr portion ̸∈ dom(next portion even))
∨ (Train direction(aTrain) = odd ∧ curr portion ̸∈ dom(next portion odd))

Condition (Accident2): the next portion is already occupied by an other train.

card(TrainOfPortion−1[{nxt port}]) > 0

Condition (MoveAuthorization): the train enters into a portion on which it
has a movement authority.

aTrain ∈ ran(TrainMA) ∧ nxt port ∈ dom(PortionMA) ∧
PortionMA(nxt port) = TrainMA−1(aTrain)

Operation Train Move, presented below, moves the train from one portion
to an other, by applying operation Train SetTrain position, or produces an
accident using operation Portion SetAccidents. If the train enters a portion
for which it has a movement authority then the authority is consumed using
operation MA RemovePortionsOfMA which removes a link between a portion and
a movement authority. These operations are a part of the basic operations pro-
vided by the functional B specification.

Train Move(aTrain) ==
PRE

aTrain ∈ Train ∧ (Pre1) ∧ (Pre2)
THEN

LET curr portion BE (Def1) IN
IF (Accident1) THEN

Portion SetAccidents(Portion Accidents ∪ {curr portion})
ELSE

LET nxt port BE (Def2) IN
Train SetTrain position(aTrain, nxt port);
IF (Accident2) THEN

Portion SetAccidents(Portion Accidents ∪ {nxt port})
END ;
IF (MoveAuthorization) THEN

MA RemovePortionsOfMA(PortionMA(nxt port), nxt port)
END

END
END

END
END
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3.3 Safe Formal Model

Operational semantics of the safety-free model allow the domain expert to visu-
alize critical situations and simulate the corresponding scenarios in the DSL
tool. In fact, in the safety-free model the driver is able to override movement
authority and traffic lights. For example, given the model of Fig. 4 animation
of operation Train Move(T1), moves train T1 from PORTION1 to PORTION2
which means that the driver violated two safety rules: the red light of POR-
TION2 and the entry into a portion without an authorization. Furthermore, as
the ATS of PORTION2 is disarmed, the train can continue its way.

Operational semantics defined by the safe formal model apply restrictions to
operations of the safety-free model in order to keep behaviours without accidents
and take into account authorizations given by the railway operating rules. First,
conditions (Accident1) and (Accident2) must be false, and then condition
(MoveAuthorization) must be true, meaning that the train cannot move if
the next portion is not concerned by any movement authority or the movement
authority associated to the next portion concerns an other train. In addition to
the portion reservation mechanism assured by movement authority the driver
must also respect signalling rules.

Condition (LightAuthorization): means that if the portion to which the train
should move is concerned by a light, then this light is either oriented to the
opposite direction than that of the train or it is green.

nxt port ̸∈ ran(LightOfPortion) ∨
Light direction(LightOfPortion−1(nxt port)) ̸= Train direction(aTrain) ∨
Light state(LightOfPortion−1(nxt port)) = on

The safe version of Train Move, named Safe Train Move, restricts the call
to Train Move by grouping all safety conditions in its precondition:

Safe Train Move(aTrain) ==
PRE

aTrain ∈ Train ∧ (Pre1) ∧ (Pre2) ∧
LET curr portion BE (Def1) IN

not(Accident1) ∧
LET nxt port BE (Def2) IN

not(Accident2) ∧ (MoveAuthorization) ∧ (LightAuthorization)
END

END
THEN

Train Move(aTrain)
END

The safe formal model applies the same principles than those discussed for oper-
ation Train Move, to the other operations and also introduces safety invariants
such as Portion Accidents = ∅, which guarantees the absence of accidents. Ani-
mation of the safe operations in Meeduse gives the possibility for the domain
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expert to attest whether the railway operating rules as specified in B, are valid
or not. A by-product of validation through simulation is that it allows also to
detect availability bugs. Indeed, it is quite easy to build a safe system, just
prevent the trains and switches from moving. The use of simulation allows the
domain experts to also assess the availability of the safe system. Note that vali-
dation by proofs and model-checking of the safe model is discussed in [15].

Figure 11 gives different states of the domain model (left hand side) with the
list of B operations (right hand side) that can be enabled by the animator at every
state. In the first state, on top of this figure, the domain expert can: (i) change the
direction of trains TRAIN1 and TRAIN2; (ii) change the switch from straight to
divergent; (iii) arm the ATS of PORTION2; and (iv) compose train routes using
instances of operation Safe MA AddPortion. In this situation the light cannot be
turned to green, it can only be kept to red due to the rules that we considered
for this example. Animation of operation Safe MA AddPortion(MA2,PORTION3)
followed by Safe MA AddPortion(MA2,PORTION2), reaches the state presented
in the middle of Fig. 11 where the color of PORTION2 and PORTION3
became orange meaning that these portions are reserved for some train. In
this state, operation safe Train Move can be enabled in order to start moving
TRAIN2. Since PORTION2 and PORTION3 are reserved for TRAIN2, opera-
tion Safe Train Move(TRAIN2) can be animated twice which leads to the state
in bottom of Fig. 11 where TRAIN2 occupies PORTION2 after consuming the
authorizations provided by its route.

Fig. 11. Meeduse animation of a railroad model with safe operational semantics (Color
figure online)
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4 Related Works

This paper has shown the application of our approach and its tool support, to the
railway field using a simple railroad DSL. In a more general context, besides the
contributions discussed along the paper to visual animation techniques [8,14,17],
our work presents an advancement in comparison with existing approaches [4,21]
where DSLs are mixed with formal methods. In fact, in these works, once the
formal model is defined (manually [4] or semi-automatically [21]), they don’t
offer any way to animate jointly the formal model and the domain model. Often
translation techniques, start from a DSL definition and then they get lost in the
formal process. In [21], the authors propose to use classical visual animation by
applying BMotion Studio [14] to the formal specifications. Unfortunately, this is
not only time consuming but also requires some additional verifications in order
to address the compatibility between the initial DSL and the graphical represen-
tations used in BMotion Studio. Our approach applies well-known MDE tools
for DSL creation (EMF, OCLinEcore and Sirius) and automatically manages
the traceability between the formal model and the domain model.

The extraction of B specifications from a meta-model applies a UML-
to-B translation technique using the B4MSecure tool [10]. The advantage of
B4MSecure in comparison with other UML-to-B tools [5,18] is that it offers an
extensibility facility allowing to easily add new UML-to-B rules or to modify
existing rules depending on the application context. B4MSecure is an open-
source MDE platform which gathers several transformations and hence it allows
to experiment transformations issued from various approaches. An other tech-
nical advantage of B4MSecure with respect to other tools is that it generates
a trace file in which links between the initial UML model and the resulting
B specification are registered. In order to translate back a state computed by
ProB to the initial DSL model, Meeduse requires such a trace file with a cor-
responding meta-model. Finally, Meeduse is conceived for formal (graphical or
textual) DSL definition, while existing tools [5,18] are concerned by UML nota-
tions only. We have experimented Meeduse on several DSLs: petri-nets, light
regulator, process scheduler, tic-tac-toe, puzzle game, lift, family model. . . The
results were concluding for a rigorous MDE development with end-user valida-
tion. It was also interesting for debugging the formal specifications thanks to the
joint domain views.

5 Conclusion

In the railway field, there are more and more attempts to define domain specific
models based on graphical representations [12,20,22]. For example the Rail-
TopoModel initiative introduced in 2013 [9] gives a common visual standard
in railway infrastructure modelling. Unfortunately, these DSLs lack of formal
operational semantics and hence they don’t apply reasoning tools to address
the correctness of their dynamic aspects. Our technique addresses this challenge
and allows domain experts, without any knowledge in formal methods, to design
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railway models in a formally defined DSL and then to simulate safety-critical
behaviours like those producing accidents. The SafeCap platform [11] proposes
a railway DSL with formal static semantics using the EMF framework. Since
Meeduse fits well to EMF-based DSLs, we think that it can contribute to this
platform in order to formally specify and simulate its operational semantics.

This mix of MDE and B has several perspectives. In addition to the appli-
cation to existing railway standards like ERTMS/ETCS, we plan to address
multi-views modeling and interactions between various models. Indeed, a rail-
way DSL can be better structured into several views which can be animated
together in Meeduse: driver views showing train interactions with signalling sys-
tems, traffic agent views managing movement authorizations and train routes,
global views...
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