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Abstract
hW-inference is a deterministic black-box, active inference algorithm for learning non–reset-

table finite state machines [Gro+20]. Although hW-inference is designed to work under the
usual assumption of a minimally adequate teacher, its termination could not yet have been
proven.

We show that hW-inference does not always terminate. We propose a modification of hW-
inference, h-forests, and prove that hW-inference with h-forests terminates given a homing
sequence for the system under inference. We also sketch how a homing sequence can be found
with a probabilistic method.

Further, we evaluate hW-inference in a case study of a supermarket scanner system. We
observe that the overall trace length varies significantly depending on the size of the charac-
terization set. We propose an heuristic optimization to hW-inference to tackle this issue and
evaluate its effect.

Resumé
hW-inference [Gro+20] est un algorithme pour l’apprentissage actif des automates finis, qui

ne peuvent pas être réinitialisés pendant l’apprentissage. Jusqu’ici, on n’avait pas pu prouver
que l’algorithme termine toujours. Dans le cadre de ce rapport, nous examinons cette question
en profondeur.

Nous démontrons avec un exemple détaillé que l’algorithme ne termine pas toujours. Pour
résoudre ce problème de terminaison, nous proposons une modification de hW-inference, qu’on
appelle h-forests. Nous démontrons que hW-inference avec h-forests termine, s’il trouve une
homing sequence correcte. On esquisse également comment une homing sequence peut être
obtenue au moyen d’un algorithme probabiliste.

De plus, on évalue la performance de hW-inference dans le cadre d’une étude de cas. On
observe que le nombre total d’interactions varie fortement en fonction de la taille du char-
acterization set. Afin de réduire ce effet, nous proposons une optimisation heuristique pour
hW-inference et évalue son effet.
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1 Introduction

When learning how to use an unknown device or computer program, many people follow an
intuitive strategy: Press random buttons and see what happens. By interacting with the system
they learn a mental model of it.

Analogously to this intuitive method, active inference algorithms build a formal model of an
existing system through interacting with a running instance of it. If the learning algorithm
does not presume any knowledge about the internals of the system under inference (SUI),
i.e., its source code, we speak of black box inference. A common model that is simple, yet
expressive enough to represent many real world applications is a finite state machine (FSM),
most commonly a Mealy machine.

A related field of research concerns passive inference, which means learning a model from
given execution traces, i.e. the log files of a program. Passive inference includes deterministic
methods (state minimization, [AP18]) and statistical approaches (i.e, Hidden Markov Models,
[CMR06]).

Active inference of finite state machines has been proven to be useful in several applica-
tion domains, including network protocols, smartcard readers and embedded systems [Vaa17;
BG19; PTR15]. First, learning yields a precise model for an already existing system, i.e. some
software artifact. This model can then be used to verify the compliance of the software with a
specification (model checking) or the generation of regression tests for later versions (model
based testing). Second, the learning itself serves as an “intelligent monkey testing” to detect
potential crashes in the software.

In this work, we focus on hW-inference [Gro+20], a recently proposed deterministic algo-
rithm for active black box inference of finite state machines. Contrary to most other active
inference algorithms [SG09; HMS03], hW-inference does not require that the system under in-
ference can be reset to an initial state. Avoiding reset operations makes active inference more
versatile. Consider for instance the case of learning a web application that runs on a remote
server. While a single request has a round-trip-time of only a few milliseconds, restarting the
application may take up to several minutes or be not possible at all. hW-inference significantly
outperforms the few other algorithms [RS93; Gro+15; Pet+17] for non resettable systems.

The theoretical framework for active inference was set by Angluin’s work on interactive
learning of accepting automata for regular languages [Ang87]. It has later been adapted on
Mealy machines [SG09]. In this framework, a learner can send output queries and equivalence
queries to a minimally adequate teacher who knows the system under inference. In an out-
put query, the learner sends an input symbol and receives the output of the SUI as response.
This can change the internal state of the system. In an equivalence query, the learner sends a
putative model, the conjecture, of the SUI. The teacher either confirms the correctness of this
model or provides a counterexample. A counterexample is a sequence of inputs that, when
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applied to the SUI, yields an output different from the output predicted by the conjecture. The
possibility to get counterexamples evades the need for an exponential runtime full search, that
would otherwise be inherent in every learning algorithm [Moo56].

While hW-inference empirically works well, its correctness has yet only been proven under
unrealistically strong assumptions on the length of the provided counterexamples. A mini-
mally adequate teacher, however, is only guaranteed to provide some counterexample for the
conjecture, if it is false. It is not clear whether in hW-inference the processing of every coun-
terexample also leads to progress. There might be pathological cases, in which the learner
requests an infinite number of counterexamples, but never converges towards a correct model.
This fear is in particular founded on the observation that intermediate conjectures found by
hW-inference can contain so-called “fake states”, which do not match any state of the SUI. The
possibility of fake states makes it tricky to find any bound for the number of counterexamples.

In this thesis we study hW-inference in depth towards answering the questions:

1. Does hW-inference always terminate when learning a deterministic FSM?

2. More precisely, under which assumptions may we prove termination?

Concretely, we make the following contributions:

Ineffective Counterexamples and Transfer Sequences We answer question 1 negatively.
In Chapter 3, we show how counterexamples can be ineffective and hW-inference does not
terminate. This example hinges on the fact that the choice of transfers from learned to unknown
states within hW-inference is not sufficiently specified. We also sketch caveats future proof-
attempts have to consider, if the choice of transfer sequences is repaired.

Fixing hW-inference: h-forests In Chapter 4, we propose h-forests, a modification to hW-
inference, which partially addresses the problem of ineffective counterexamples. We prove that
if hW-inference finds a homing sequence, h-forests infers a correct conjecture after at most 𝑛
equivalence queries, 𝑛 being the number of states in the system under inference. We then
sketch how to resolve this constraint, by sh h-forests can be further extended to find a homing
sequence with high probability.

Heuristic: W-set pruning In Chapter 5, we motivate and propose a heuristic, W-set pruning,
that aims at reducing the number of output queries performed by hW-inference.

Application and Experiments We evaluate the effectiveness of W-set pruning on the case
study of a supermarket self-service system in Chapter 6. Since the system under inference is
not a finite state machine, we describe challenges in abstracting its behaviour in order to use
finite state machine inference algorithms on it.
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Note that in this work, we restrict ourselves on the non-adaptive version of hW-inference
[Gro+20], setting aside the more involved version of the algorithm that uses adaptive sequences
[GBS19].

The thesis starts by introducing basic concepts and recapitulating in detail how hW-inference
works (Chapter 2). After presenting our contributions in Chapters 3 – 6, we conclude our
findings and give an outlook on future work (Chapter 7).
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2 Preliminaries

In this chapter we introduce basic notions of finite state machines (Sections 2.1 and 2.2). We
present the problem of active inference of active inference of finite state machines (Section
2.3) and how it is solved by hW-inference (Section 2.4). We recapitulate the mechanics of the
algorithm as it was proposed by Groz et al. [Gro+20] in detail, as a thorough understanding is
essential for all the following chapters.

2.1 Finite State Machines

The type of systems that can be learned by hW-inference are finite state machines. A finite-state
machine (FSM) or finite-state automaton is a model of computation. It describes a system that
is in exactly one of several states at any given time. The system reacts to externally provided
input by changing from its current state to another and by yielding some output. Although
finite state machines are strictly less powerful than other models of computation, most notably
Turing machines, many every day and industry technical systems can be modeled as finite
state machines. Examples range from vending machines, voice menus of telephone hotlines,
to microcontrollers embedded in car engines.

We formalize finite state machines as deterministic Mealy machines; a formalism which was
introduced by Mealy to model sequential switching circuits [Mea55].

Definition 2.1 (Finite State Machine) A finite state machine is a tupleM = (𝑄, 𝐼,𝑂, 𝜆, 𝛿). 𝑄
is the finite set of states. 𝐼 and 𝑂 are the finite sets containing the input symbols and the output
symbols of the machine, respectively. The function 𝜆 : 𝑄 × 𝐼 → 𝑂 denotes the output 𝜆(𝑞, 𝑖)
obtained when applying input 𝑖 in state 𝑞. Likewise, the function 𝛿 : 𝑄 × 𝐼 → 𝑄 denotes the
transition to state 𝛿 (𝑞, 𝑖) when applying input 𝑖 in state 𝑞.

Since we defined 𝜆 and 𝛿 as functions with domain 𝑄 × 𝐼 we implicitly ask, that every input
can be applied in every state. Finite state machines with this property are said to be complete.

We overload the functions 𝜆 and 𝛿 to handle sequences of inputs, including the empty se-
quence 𝜀: 𝛿 (𝑞, 𝜀) = 𝑞, and recursively for 𝛼 ∈ 𝐼 ∗, 𝑥 ∈ 𝐼 : 𝛿 (𝑞, 𝛼𝑥) = 𝛿 (𝛿 (𝑞, 𝛼), 𝑥). Similarly, we
have: 𝜆(𝑞, 𝜀) = 𝜀and 𝜆(𝑞, 𝛼𝑥) = 𝜆(𝑞, 𝛼) .𝜆(𝛿 (𝑞, 𝛼), 𝑥).

We call the corresponding sequence of outputs 𝜆(𝑞, 𝛼) a response and the pair of an input
sequence 𝛼 and its response 𝛽 a trace, notated as𝜔 = 𝛼/𝛽 . Conversely, the operators𝜔 = 𝛼 and
𝜔 = 𝛽 project a trace variable𝜔 = 𝛼/𝛽 to its corresponding input and output sequences. When
applying an input sequence 𝛼 to a machine in state 𝑞, we refer to 𝑞 and 𝛿 (𝑞, 𝛼) as head and tail
states of the corresponding trace, respectively. We denote the concatenation of two traces 𝛼/𝛽
and 𝛾/𝛿 with a “.”: 𝛼/𝛽.𝛾/𝛿 . If we the output of a trace is not important for our reasoning, we
avoid naming it by writing 𝛼/− for the respective trace.
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𝑞2

𝑞3

a/0

b/1
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b/0
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b/0

ℎ/0

ℎ/1

𝑤/00

𝑤/01
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Figure 2.1 Example finite state machine with three states, input set 𝐼 = {𝑎, 𝑏} output set 𝑂 = {0, 1}.
For a homing sequence ℎ = 𝑎 and a characterization set𝑊 = {𝑏𝑏} we indicate the re-
sponses to the homing and characterizign sequences in red and green, respectively.

The operator | · | indicates the length of a sequence of input or output symbols or a trace,
respectively. Note that we also use | · | on sets to indicate their cardinality.

A finite state machineM is strongly connected, if and only if every state can be reached from
any other state, i.e., ∀𝑞, 𝑞′ ∈ 𝑄 : ∃𝛼 ∈ 𝐼 ∗ : 𝛿 (𝑞, 𝛼) = 𝑞′.

A sequence 𝛼 ∈ 𝐼 ∗ is said to distinguish the states 𝑞 and 𝑞′, if 𝜆(𝑞, 𝛼) ≠ 𝜆(𝑞′, 𝛼). Two states
𝑞, 𝑞′ are equivalent, if there is no sequence distinguishing 𝑞 and 𝑞′. A finite state machineM
is minimal, if there are no equivalent states, i.e., ∀𝑞, 𝑞′ ∈ 𝑄 : ∃𝛼 ∈ 𝐼 ∗ : 𝜆(𝑞, 𝛼) ≠ 𝜆(𝑞′, 𝛼).

Typically, finite state machines are defined declaring some initial state. The machines are
said to be equivalent, if their initial states are equivalent. However, since we are concerned
with strongly connected machines that cannot be reset, the initial state is of less importance.
We say two machinesM,M′ are equivalent, if there is a state 𝑞 ofM and a state 𝑞′ ofM′,
such that 𝑞 and 𝑞′ are equivalent. We writeM ≡M′.

2.2 Homing and Characterizing Sequences

In hW-inference we often apply a specific sequence to infer the head or tail state by the re-
sponse. A homing sequence determines its tail state, while multiple characterizing sequences
determine a head state.

Definition 2.2 (homing sequence) For a finite state machineM = (𝑄, 𝐼,𝑂, 𝜆, 𝛿), a sequence
ℎ ∈ 𝐼 ∗ is homing, if the response to ℎ uniquely identifies its tail state. More formally, for any states
𝑞, 𝑞′ ∈ 𝑄 , 𝜆(𝑞, ℎ) = 𝜆(𝑞′, ℎ) =⇒ 𝛿 (𝑞, ℎ) = 𝛿 (𝑞′, ℎ).

For example, in the finite state machine in Figure 2.1 the sequenceℎ = 𝑎 is homing. Applying
ℎ to the states 𝑞1 or 𝑞2 leads to tails state 𝑞2 with the response 0, respectively. The response 1
leads to tail state 𝑞1 (from 𝑞3).
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Note that the above definition states that same responses to a homing sequence must not lead
to different tail states. On the other hand, a homing sequence might yield different responses
that lead to the same tail state.

Every minimal finite state machine has a homing sequence. Rivest and Schapire [RS93] give
the following constructive proof. If a sequence ℎ ∈ 𝐼 ∗ is not homing, there exist two states
𝑞1, 𝑞2 ∈ 𝑄 with 𝜆(𝑞1, ℎ) = 𝜆(𝑞2, ℎ), but 𝑞′1 = 𝛿 (𝑞1, ℎ) ≠ 𝛿 (𝑞2, ℎ) = 𝑞′2. Because the machine
is minimal, there exists a distinguishing sequence 𝑔 ∈ 𝐼 ∗ for 𝑞′1 and 𝑞′2, such that 𝜆(𝑞′1, 𝑔) ≠
𝜆(𝑞′2, 𝑔). We refine ℎ as ℎ𝑔. This refinement increases the number of possible responses to ℎ by
1. Also there can be no more than 𝑛 = |𝑄 | such responses. Thus, after maximally 𝑛 refinements,
ℎ is homing. Moreover, since there always exists a distinguishing sequence 𝑔 shorter than 𝑛,
the constructed ℎ is not longer than 𝑛2.

Definition 2.3 (characterization set) A set of sequences𝑊 ⊂ 𝐼 ∗ is a characterization set (also
called W-set) for a finite state machineM = (𝑄, 𝐼,𝑂, 𝜆, 𝛿), if any state ofM is uniquely iden-
tified by its set of responses to the sequences 𝑤 ∈ 𝑊 . Formally, ∀𝑞, 𝑞′ ∈ 𝑄 : 𝑞 ≠ 𝑞′ =⇒
∃𝑤 ∈ 𝑊 : 𝜆(𝑞,𝑤) ≠ 𝜆(𝑞′,𝑤). For a characterization set𝑊 , we call the unique mapping from
the sequences in𝑊 to output sequences for a state 𝑞 its characterization, denoted by 𝜙𝑊 (𝑞) B
{𝑤 ↦→ 𝜆(𝑞,𝑤) |𝑤 ∈𝑊 }.

For the example in Figure 2.1, the set 𝑊 = {𝑏𝑏} characterizing, since 𝜙 (𝑞1) = {𝑏𝑏 ↦→
11}, 𝜙 (𝑞2) = {𝑏𝑏 ↦→ 00}, and 𝜙 (𝑞3) = {𝑏𝑏 ↦→ 10}.

When the characterization set𝑊 is clear in a context, we just write 𝜙 instead of 𝜙𝑊 .
One can easily see that for any minimal finite state machine there exists a characterization

set. It is the set that contains the distinguishing sequences which exist for any pair of states.
We call a tuple (ℎ,𝑊 ) of a homing sequenceℎ and a characterization set𝑊 homing-characterizing.

2.3 Assumptions and Problem

We are now ready to define the problem that is solved by hW-inference. We assume that the
system under inference exhibits the following properties:

1. The system’s behaviour can be fully expressed by a deterministic Mealy machine (as
defined in Definition 2.1). This implies in particular, that the system is deterministic and
has a finite number of states.

2. The finite state machine describing the system is strongly connected.

3. Its input alphabet 𝐼 is known a priori.

As for most parts of this work, we will say the system under inference is a deterministic
Mealy machine (or finite state machine), although we are – strictly speaking – referring to the
finite state machine describing the behaviour its system.

Our definition of Mealy machines require properties that might not be met by a world sys-
tem, but can easily be ensured by the driver. The driver is the piece of software (or software and
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hardware) that connects the learner with the system under inference. If the system has multi-
ple finite output variables 𝑂1, . . . ,𝑂𝑘 , we can consider their possible combinations as a single
output alphabet 𝑂 = 𝑂1 × · · · × 𝑂𝑘 . If the system has no output, the driver can implement
a timeout and return a special no-output symbol when the system does not output anything
before the timeout expires.

Definition 2.4 (active inference) Given a system with the above properties, learn a Mealy ma-
chine (a model) equivalent to the system by two types of queries: (1) Output queries consist of an
input symbol 𝑥 ∈ 𝐼 . Upon an output query, 𝑥 is applied to the system under inference, and its
response 𝑜 ∈ 𝑂 is returned. (2) Equivalence queries, as defined below.

The possibility to ask output queries and equivalence queries is also called learning with a
minimally adequate teacher [Ang87].

Counterexample Oracle We further assume that the learner has the ability to make equiva-
lence queries to an external oracle. The oracle decides whether the conjecture model learned by
hW-inference is equivalent to the model of the system under inference. If not, it also provides a
counterexample, that is a sequence of inputs for which the real system yields a different output
than the conjecture would suggest. Formally, we can define the oracle as a function O(M,𝑞) ,
which is parameterized by the real model of the systemM = (𝑄, 𝐼,𝑂, 𝜆, 𝛿) and its current state
𝑞 ∈ 𝑄 . O takes as input a conjecture modelM′ = (�̃�, 𝐼 , �̃�, �̃�, 𝛿) and its current state 𝑞′ ∈ �̃� .

O(M,𝑞) : (M′, 𝑞′) ↦→
{

none ifM ≡M′

𝛼 ∈ 𝐼 ∗ s.t. 𝜆(𝑞, 𝛼) ≠ �̃�(𝑞′, 𝛼) else

As often in computer science, the notion of oracle indicates a function whose computation
requires further knowledge or time, i.e. a model of the system under inference. As having such
knowledge subverts the idea of black-box-inference, the assumption to have a counterexample
oracle might appear to be unrealistically strong. An oracle is, however, necessary, to ultimately
decide the correctness of the inferred conjecture in absence of a bound. Moore showed that
without an oracle the problem of learning a FSM is exponential [Moo56].

In practice, we can approximate the oracle by applying random inputs on both the conjecture
and the real system. This method might use, however, some bound on the size of the system
to determine a reasonable length of a error-free random walk after which the inferred model
is considered correct.

2.4 hW-inference

As the name suggests, the two central variables of hW-inference are an input sequence ℎ and
a set of input sequences 𝑊 . We first present a method, the backbone algorithm, that infers a
correct model, if ℎ,𝑊 is homing-characterizing for the system under inference. We then show
how ℎ and 𝑊 can be constructed during multiple iterations of the backbone algorithm with
tentative, non-homing ℎ and non-characterizing𝑊 .

7



Algorithm 1 Backbone algorithm
1: procedure backbone-inference(ℎ,𝑊 )
2: �̃�, �̃�, 𝛿 ← ∅
3: 𝐻 ← {(𝑟, ∅) | 𝑟 ∈ 𝑂∗}
4: repeat
5: apply ℎ and observe 𝑟 ∈ 𝑂∗
6: 𝑝 ← 𝐻 (𝑟 )
7: if 𝑝 is partial then ⊲ Learn the state
8: apply 𝑤 ∈𝑊 \dom(𝑝), observe 𝑦
9: 𝑝 ← 𝑝 ∪ {𝑤 ↦→ 𝑦}

10: if 𝑝 is complete then �̃� ← �̃� ∪ {𝑝} end if
11: else ⊲ 𝑝 is complete
12: find shortest 𝛼𝑥 ∈ 𝐼 ∗ × 𝐼 , s.t. 𝑝′ = 𝛿 (𝑝, 𝛼) complete and 𝑝′′ = 𝛿 (𝑝′, 𝑥) partial
13: apply 𝛼.𝑥 .𝑤 (𝑤 ∈𝑊 \dom(𝑝′′)), observe 𝛽.𝑜.𝑦; ⊲ Learn a transition
14: �̃�(𝑝′, 𝑥) ← 𝑜 and 𝑝′′ ← 𝑝′′ ∪ {𝑤 ↦→ 𝑦}
15: if 𝑝′′ is complete then ⊲ add tail state to conjecture
16: �̃� ← �̃� ∪ {𝑝′′} and 𝛿 (𝑝′, 𝑥) ← 𝑝′′

17: end if
18: end if
19: untilM′ = (�̃�, 𝐼 ,𝑂, 𝛿, �̃�) is complete
20: end procedure

From now on, we refer to the inferred finite state machine as conjecture and denote it as
M′ = (�̃�, 𝐼 ,𝑂, �̃�, 𝛿). At some point, the algorithm presumes to be in a conjecture state 𝑝 ∈ �̃�
and applies an input sequence 𝛼 ∈ 𝐼 ∗ and observes outputs 𝑧. We denote this with 𝑝 !𝛼/𝑧.
Having such an operator is necessary, as 𝑧 can deviate from 𝛿 (𝑝, 𝛼), if the conjecture is false.

2.4.1 The Backbone Algorithm

Let us for now assume, (ℎ,𝑊 ) is homing-characterizing. Recall that the homing property of
ℎ ensures that we are always in the same state after observing the same response to ℎ. This
allows us to use ℎ as a surrogate for a reset operation. Recall also the that characterizing
property of𝑊 means that each state can be uniquely identified by its characterization function
𝜙 (𝑞) : 𝑊 → 𝑂∗. To ease exposition of hW-inference, we represent inferred states only by
their characterization instead of introducing arbitrary handles, i.e. for every conjecture state
𝑝 ∈ �̃� : 𝜙 (𝑝) = 𝑝 . The characterization of states is learned gradually. We say a state 𝑝 ∈ �̃� is
complete, if we know its full characterization, i.e. dom(𝑝) =𝑊 , and is partial, otherwise.

We give pseudocode for the backbone algorithm in Algorithm 1.
The main loop of the backbone algorithm starts by applying the homing sequence ℎ in order

to transfer the system to a known state. For every observed response 𝑟 ∈ 𝑂∗ to ℎ, we store
the homing tail state in a map 𝐻 : 𝑂∗ → 𝑊 × 2𝑂∗ . Initially, these states are partial since
dom(𝐻 (𝑟 )) = ∅. Thus, after observing ℎ/𝑟 , we apply a missing characterization sequence
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𝑞1

𝑞2

𝑞3

a/0

b/1

a/0

b/0

a/1

b/0

(a) Finite state machine to be learned.

𝑝1

𝑝2 𝑝3

ℎ/1

ℎ/0 b/0

a/0 a/1

(b) Conjecture after 14 transitions

Figure 2.2 Example for the backbone algorithm.

𝑤 ∈ 𝑊 \dom(𝐻 (𝑟 )) to learn the state’s characterization. After having visited the same tail
homing state |𝑊 | times, it is complete. We can add the state to �̃� .

Once a state 𝑝 is complete, we can learn transitions from it. We apply an input symbol 𝑥 ∈ 𝐼 ,
for which we do not know the reached state completely. The trace 𝑥/𝑜 allows to learn �̃�(𝑝, 𝑥).
The tail state 𝛿 (𝑝, 𝑥) is partial and we apply a sequence 𝑤 ∈𝑊 \dom(𝛿 (𝑝, 𝑥)). More generally,
when all transitions from 𝑝 are known, the algorithm chooses the shortest path 𝛼 leading to
state with an unknown transition in the conjecture. We then apply a missing sequence for the
tail state of this transition.

Every time a state 𝑝′ = 𝛿 (𝑝, 𝑥) reached from 𝑝 is fully characterized, we have either found a
new state and add it to �̃� or learned a transition to an already known state.

The algorithm stops when all reachable states are fully characterized. Since ℎ is homing,
the characterization sequences for a state in 𝐻 (𝑟 ) are all applied in the same real state. Conse-
quently, all input sequences applied to a conjecture state 𝑝′ reached through a transfer sequence
𝛼 after a state 𝑝 are applied to the same real state as well. Every conjecture state thus has the
characterization of a real state, and because𝑊 is characterizing, states are distinguished cor-
rectly. SinceM is strongly connected, all states are learned once the conjecture is complete.

Example To illustrate the backbone algorithm, we consider the finite state machine in Figure
2.2a as an example. A possible homing sequence ℎ is 𝑎. Also all states respond differently to
the sequence 𝑏𝑎, so𝑊 = {𝑏𝑎} is a valid characterization set. Assume, the system is in state 𝑞3
at the beginning of the inference.

We start by applying the homing sequence and observe 𝑎/1. The system is now in state 𝑞1.
Since we do not know the tail state for this response yet, i.e. 𝐻 (0) = ∅, we apply 𝑏𝑎 = 𝑤 ∈𝑊 .
We observe 𝑏𝑎/10 and thus have learned a complete state 𝑝1 with 𝜙 (𝑝1) = {𝑏𝑎 ↦→ 10}.

𝑞3
𝑎/1
−−→︸︷︷︸
ℎ

𝑞1
𝑏𝑎/10
−−−−→︸︷︷︸
𝑤=𝑏𝑎

𝑞2

9



We again apply ℎ/0 to localize. We do not know yet the tail state of ℎ reached after 0, so we
apply 𝑏𝑎 to learn it. We now know two states, 𝑝1 = 𝐻 (1) and 𝑝2 = 𝐻 (0) (𝜙 (𝑝2) = {𝑏𝑎 ↦→ 01})
that can be reached after homing.

𝑞2
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏𝑎/01
−−−−→︸︷︷︸
𝑤=𝑏𝑎

𝑞1

After the next homing ℎ/0 we arrive in the complete state 𝑝2. We can thus learn a transition
(line 11 in Algorithm 1). We apply 𝑥 = 𝑎 ∈ 𝐼 , since the state 𝛿 (𝑝2, 𝑎) is yet undefined, and then
𝑏𝑎/01 to characterize the state after the transition. We learned �̃�(𝑝2, 𝑎) = 0 and 𝛿 (𝑝2, 𝑎) = 𝑝2.

𝑞1
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑎/0
−−→︸︷︷︸
𝑥=𝑎

𝑞2
𝑏𝑎/01
−−−−→︸︷︷︸
𝑤=𝑏𝑎

𝑞1

In the same way, we learn the next transition by 𝑏 leading to a new state 𝑝3 = 𝛿 (𝑝2, 𝑏) with
𝜙 (𝑝3) = {𝑏𝑎 ↦→ 00}:

𝑞1
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝑥=𝑏

𝑞3
𝑏𝑎/00
−−−−→︸︷︷︸
𝑤=𝑏𝑎

𝑞2

After the next homing, we are in state 𝑝2 again. All transitions of this state are known, so we
choose a shortest transfer sequence 𝛼 = 𝑏 that leads to the complete state 𝑝3, which has at least
one partial subsequent state. The state 𝛿 (𝑝3, 𝑎) is partial for its known characterization is ∅.
We learn that the state 𝛿 (𝑝3, 𝑎) is the already known state 𝑝1 and that the output symbol of the
transition is �̃�(𝑝3, 𝑎) = 1.

𝑞2
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝛼=𝑏

𝑞3
𝑎/1
−−→︸︷︷︸
𝑥=𝑎

𝑞1
𝑏𝑎/10
−−−−→︸︷︷︸
𝑤=𝑏𝑎

𝑞2

The conjecture learned by now is depicted in Figure 2.2b. The other transitions are learned in
a similar manner. The algorithm stops, once the conjecture is complete.

2.4.2 Finding ℎ and𝑊 : Nondeterminism

So far we have seen how finite state machines can be inferred if we know sequences (ℎ,𝑊 )
that are homing-characterizing. However, we do not know such (ℎ,𝑊 ) a priori for a system
under inference. The key idea in hW-inference is to start with tentative ℎ and 𝑊 that are
not homing-characterizing. With such (ℎ,𝑊 ) the system under inference will appear to be-
have non-deterministically. We leverage this apparent nondeterminism to refine ℎ and𝑊 until
(ℎ,𝑊 ) is eventually homing-characterizing.

h-ND Let us suppose ℎ is not homing. That is, for the same response 𝑟 to ℎ the system might
be in different states 𝑞 and 𝑞′. Since these states are assumed to be one state 𝐻 (𝑟 ) in the con-
jecture, this conjecture state can appear to be non-deterministic. Formally, an ℎ-inconsistency
occurs, if the global trace (all interactions with the system during inference) contains the traces
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Algorithm 2 hW-infernce
1: procedure hW-inference
2: ℎ ← 𝜀,𝑊 ← ∅
3: repeat
4: try
5: M ← backbone-algorithm(ℎ,𝑊 ) ⊲ infer model
6: 𝑐 ← query oracle withM ⊲ ask for counterexample
7: if counterexample 𝑐 was found then
8: apply 𝑐 ⊲ yields non-determinism
9: end if

10: catch h-ND or W-ND
11: refine ℎ and𝑊 accordingly
12: end try
13: until no counterexample is found
14: returnM
15: end procedure

ℎ/𝑟 .𝛽/𝑦 and ℎ/𝑟 .𝛽/𝑦′ with 𝑦 ≠ 𝑦′. This observation is twofold: (1) ℎ is not homing. (2) The in-
put sequence 𝛽 distinguishes two tail states of ℎ/𝑟 . Hence, whenever an ℎ-inconsistency occurs,
we refine ℎnew B ℎold.𝛽 , such that 𝑞 and 𝑞′ are distinguished.

W-ND If 𝑊 is not characterizing, there are different states 𝑞 and 𝑞′ that have the same re-
sponse to all sequences in𝑊 . During inference, they are characterized as the same conjecture
state 𝑝 . However, there exists a sequence 𝛽 with 𝜆(𝑞, 𝛽) ≠ 𝜆(𝑞′, 𝛽). Consequently, the response
observed when applying 𝛽 to 𝑝 appears to be non-deterministic depending on the current real
state. We call this a 𝑊 -inconsistency. Formally, it occurs when the traces ℎ/𝑟1.𝛼1/−.𝛽/𝑦1 and
ℎ/𝑟2.𝛼2/−.𝛽/𝑦2 with 𝛿 (𝐻 (𝑟1), 𝛼1) = 𝛿 (𝐻 (𝑟2), 𝛼2) and 𝑦1 ≠ 𝑦2 are observed.

The sequence 𝛽 is a distinguishing sequence for the possible states of the real system in
conjecture states 𝛿 (𝐻 (𝑟1), 𝛼1) and 𝛿 (𝐻 (𝑟2), 𝛼2). Moreover, all real states passed while applying
𝛽 are distinguished by some suffix of 𝛽 . There are different strategies to refine𝑊 (cf. [IOG10]).
Groz et al. propose to add the shortest suffix 𝛽 ′ of 𝛽 that is not yet in𝑊 to𝑊 . All prefixes of
𝛽 ′ in𝑊 can then be removed, as they distinguish states that are distinguished by 𝛽 anyhow.

The backbone algorithm is augmented in two ways in order to detect and handle non-
determinism as just described. First, every interaction with the real machine is wrapped by
a proxy component, that keeps track of the global trace. As soon as an ℎ- or𝑊 - inconsistency
is detected, an exception is raised. ℎ or 𝑊 are refined as presented above and the backbone-
algorithm is restarted with an empty conjecture and the refined ℎ and𝑊 .

Otherwise the backbone algorithm terminates with an inferred conjecture. We then ask the
oracle for a counterexample. If there is no counterexample, the conjecture is correct. Oth-
erwise, we apply the counterexample on the system under inference. This will yield an ℎ-
inconsistency or a 𝑊 -inconsistency. We refine ℎ and 𝑊 and restart the backbone algorithm.

11



𝑝1 𝑎/0 𝑏/0

(a) ℎ = 𝜀,𝑊 = ∅

𝑝2𝑝1
ℎ/0

𝑏/0

𝑎/1, 𝑏/0

a/0
(b) ℎ = 𝑎,𝑊 = {𝑎}

Figure 2.3 Conjecture after the first (2.3a) and second subinference (2.3b) on the machine in Figure
2.1.

Each round of the backbone algorithm with an updated ℎ and𝑊 is called a subinference. The
complete hW-inference is shown in Algorithm 2.

An incorrect conjecture might not be strongly connected. We thus adapt line 12 to stop the
backbone algorithm if no transfer sequence to a partial state can be found. In this case, we ask
for a counterexample as well.

Note, that we defined inconsistencies with respect to traces, but counterexamples with re-
spect to conjectures. However, during a counterexample at some point the actual output di-
verges from the output predicted by the conjecture. This transition was traversed at least once
during learning, so the respective trace will yield an inconsistency with the currently applied
trace.

It remains to see that ℎ and 𝑊 are homing-characterizing after a finite number of such re-
finements. The refinements of ℎ conform to the constructive proof that a homing sequence
exists we gave in Section 2.4. Thus, ℎ is homing after extending it at most 𝑛 = |𝑄 | times. To
show that𝑊 is eventually characterizing, Groz et al. make the additional assumption that the
counterexamples provided by the oracle only lead to refinements in𝑊 of length shorter than 𝑛.
Since any non-equivalent states can be distinguished by some sequence shorter than 𝑛, there
surely is a characterization set containing only such sequences. Thus, after adding a potentially
exponentially large yet finite number of characterizing sequences,𝑊 is a characterization set.

Example Consider again the finite state machine in Figure 2.2a. At the start of hW-inference,
we have ℎ = 𝜀 and𝑊 = ∅. Suppose the system under inference is in state 𝑞2.

𝑞2
𝜀−−→︸︷︷︸
ℎ

𝑞2
𝑎/0
−−→︸︷︷︸
𝑥=𝑎

𝑞2
𝜀−−→︸︷︷︸

𝑤=𝜀

𝑞2
𝜀−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝑥=𝑏

𝑞3

We apply ℎ = 𝜀 for homing. Since 𝑊 = ∅, the state 𝑝1 = 𝐻 (∅) is complete (𝜙 (𝑝1) = ∅) and
we learn immediately the first transition 𝑎/0. Again due to 𝑊 = ∅ there is only the state 𝑝1,
and we learn a loop. Similarly, we learn a loop for 𝑏/0. We end up with the “daisy” machine in
Figure 2.3a. This is always the case after the first subinference with empty ℎ and𝑊 .
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We now query the oracle for a counterexample, which we suppose to be 𝑎.

𝑞3
𝑎/1
−−→ 𝑞1

Applying the counterexample triggers an ℎ-inconsistency, because we observed ℎ/𝜀.𝑎/0 before
and ℎ/𝜀.𝑎/1 now. ℎ is extended by 𝑎. At the same time, we have a𝑊 -inconsistency, since we
observed different traces 𝑎/0 and 𝑎/1 from state 𝑝1. So we set𝑊 = {𝑎}.
ℎ = 𝑎 is already homing. The next subinference proceeds as usual:

𝑞1
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑎/0
−−→︸︷︷︸
𝑤=𝑎

𝑞2
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑎/0
−−→︸︷︷︸
𝑥=𝑎

𝑞2
𝑎/0
−−→︸︷︷︸
𝑤=𝑎

𝑞2
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝑥=𝑏

𝑞3
𝑎/1
−−→︸︷︷︸
𝑤=𝑎

𝑞1

We learned a state 𝑝1 = 𝐻 (0) with characterization 𝜙 (𝑝1) = {𝑎 ↦→ 0} and the transitions
𝑎/0 and 𝑏/0 from it. 𝑎 is a loop and 𝑏 leads to another state 𝑝2 with 𝜙 (𝑝2) = {𝑎 ↦→ 1}. We now
learn transitions from 𝑝2.

𝑞1
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝛼=𝑏

𝑞3
𝑎/1
−−→︸︷︷︸
𝑥=𝑎

𝑞1
𝑎/0
−−→︸︷︷︸
𝑤=𝑎

𝑞2
𝑎/0
−−→︸︷︷︸
ℎ

𝑞2
𝑏/0
−−→︸︷︷︸
𝛼=𝑏

𝑞3
𝑏/0
−−→︸︷︷︸
𝑥=𝑏

𝑞1
𝑎/0
−−→︸︷︷︸
𝑤=𝑎

𝑞2

By now we have learned the conjecture in Figure 2.3b, which is complete. Since we learned
the transition from 𝑝2 to 𝑝1 by 𝑏/0 and then looped with 𝑎/0, we are in conjecture state 𝑞2.
Assume, we get the following counterexample by the oracle:

𝑞2
𝑏/0
−−→ 𝑞3

𝑎/1
−−→ 𝑞1

𝑏/1
−−→ 𝑞1

This yields a 𝑊 -inconsistency, as we have observed 𝑏/0 from state 𝑝1. We extend 𝑊 by 𝑏.
𝑊 = {𝑎, 𝑏} is characterizing, so in the next subinference we infer a correct conjecture.

Optimizations

There are several heuristic optimizations of hW-inference, which aim to decrease either the
total trace length or the number of calls to the counterexample oracle. For a detailed expostion
of these optimizations, we refer the reader to [Gro+20].
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3 Towards showing Termination of
hW-inference

Groz et al. showed the correctness of the hW-inference method under quite a strong assump-
tion: All counterexamples must have a distinguishing suffix that is no longer than the number
of states of the system 𝑛. While such counterexamples do always exist, it might be hard to
find them. An oracle that yields minimal counterexample would be more powerful than what
we demand from a “minimally adequate teacher”. In particular, an oracle with this guarantee
is hard to implement or approximate. Random walks, for instance, may contain loops of ar-
bitrary length before eventually yielding an inconsistency. Suppose now, that hW-inference
is equipped with a minimal adequate oracle (as formally defined in Section 2.3). Does hW-
inference still terminate after a finite number of counterexample queries?

In Section 3.1, we sketch how there might be counterexamples on which hW-inference makes
no progress. We illustrate, how these ineffective counterexamples can in fact lead to the non-
termination of hw-inference in Section 3.2. To this end, we also exploit the fact that the choice
of transfer sequences in hW-inference is not sufficiently specified. Section 3.3 discusses how
termination might be proven or disproven, once the choice of transfer sequences is fixed.

3.1 Fake States and Ineffective Counterexamples

When running hW-inference on a system we know and comparing the intermediate conjec-
tures with the real system, we observe an interesting phenomenon: There are conjecture states
with a characterization that is impossible for any real state of the system. We call these states
fake states. Formally, 𝑝 ∈ �̃� is a fake state, if �𝑞 ∈ �̃� : ∀𝑤 ∈ 𝑊 : 𝜙 (𝑝) (𝑤) = 𝜆(𝑞,𝑤). How
can fake states occur? Recall there are two possibilities, how new states are learned in hW-
inference: (a) As tail state of a homing sequence or (b) at the end of a transition. In both cases,
we can learn fake states.

(a) h-ambiguous: Ifℎ is not homing, there is a response 𝑟 , such that the traceℎ/𝑟 has different
tail states 𝑞1, ...𝑞𝑘 . We then call the conjecture state 𝑝 = 𝐻 (𝑟 ) is ambiguous. Every time
a sequence 𝑤 is applied to learn its characterization, we are in one of the states 𝑞1, ...𝑞𝑘 .
For the characterization of 𝑝 we have 𝜙 (𝑝) (𝑤) ∈ {𝜆(𝑞𝑖 ,𝑤) | 𝑖 = 1, . . . , 𝑘} for all 𝑤 ∈ 𝑊
(see Figure 3.1a).

(b) 𝑊 -ambiguous: If 𝑊 is not characterizing, multiple real states can be considered as one
conjecture state as well. Consider the conjecture in Figure 3.1b. Let 𝑞1, 𝑞2 ∈ 𝑄 have the
same characterization 𝜙 (𝑞1) = 𝜙 (𝑞2) with respect to 𝑊 . Learning the transition from
𝑞3 to 𝑞2 will thus learn the conjecture transition 𝑝2 −−→ 𝑝1. 𝑝1 is now an ambiguous

14



𝑞1

𝑞2

ℎ/𝑟

ℎ/𝑟

𝑝

ℎ/𝑟

(a) ℎ-ambiguous state 𝑝

𝑞3

𝑞1

𝑞2

𝑞4

𝑞5

𝑡/𝑥

𝑡/𝑥

𝑝2

𝑝1

𝑝1 𝑝3

𝑡/𝑥

(b)𝑊 -ambiguous state 𝑝

Figure 3.1 Initial ambiguous states appear during inference, if (ℎ,𝑊 ) is not homing-characterizing.
The real states and transition are drawn in black, the conjecture machine in green.

state with 𝜙 (𝑝1) = 𝜙 (𝑞1) = 𝜙 (𝑞2). When learning a transition from 𝑝2, the charac-
terization of the tail state 𝑝3 depends on whether we are in 𝑞1 or 𝑞2, when applying
𝑡𝑤 to learn 𝑝3. In the general case with states 𝑞1, ...𝑞𝑘 in state 𝑝 , we have 𝜙 (𝑝3) (𝑤) ∈
{𝜆(𝛿 (𝑞𝑖 , 𝑡),𝑤) | 𝑖 = 1, . . . , 𝑘} (𝑤 ∈𝑊 ). 𝑝3 can thus be a fake state.

𝑝1

𝑝2

𝑡/𝑥

𝛽/𝑦1

𝛽/𝑦2

(a) Subinference 𝑖

𝑡/𝑥

𝑡/𝑥

𝑝1 𝑝3

𝑝2

𝑡/𝑥

(b) Subinference 𝑖 + 1

Figure 3.2 Example of how a counterexample can lead to the discovery of a new fake state 𝑝3 (𝜙 (𝑝3) =
𝜙 (𝑝2) ∪ {𝛽 ↦→ 𝑦1}) instead of making progress.

The possibility of fake states makes it difficult to account for the progress of counterexamples.
Every increase of 𝑊 , increases the upper bound for the number of fake states to 𝑛 |𝑊 | . Every
counterexample can lead to the discovery of a new fake state. Assume the example sketched
in Figure 3.2 a counterexample disproves that a transition 𝛿 (𝑝1, 𝑡) = 𝑝2 exists, by observing
two traces 𝛽/𝑦2 from 𝑝2 and 𝑡/𝑥 .𝛽/𝑦1 from 𝑝1 with 𝑦1 ≠ 𝑦2. Thus, 𝑝′ cannot be the state
reached after 𝑝 by 𝑡 . However, if 𝑝 is ambiguous, we can discover a fake state 𝑝3 = 𝛿 (𝑝1, 𝑡) with
𝜙 (𝑝3) (𝛽) = 𝑦2. 𝑝3 is a new state. This counterexample did not eliminate the ambiguity in state
𝑝1. We term this phenomenon ineffective counterexamples.
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A major challenge in proving (or disproving) termination of ℎ𝑊 -inference is to show that
ineffective counterexamples can only appear a finite number of time. As seen above, the char-
acterization of states depends on the order in which the different incoming paths (and thus real
states) are used when learning the state.

3.2 Infinite Machines with Bad Transfer Sequences

We now give an an concrete example to illustrate that the problem of ineffective counterexam-
ples can prevent termination of hW-inference. To have ever new fake states, ambiguous states
are reached in a specific order, so as to have fake states with different characterizations. We
ensure this order by the choice of transfer sequences from complete to partial states.

Recall that when we are in a complete state after homing, we choose a transfer sequence
𝛼 to another complete state that has a transition to a partial state (line 12 in Algorithm 1).
The only requirement is to choose a state and a transfer sequence such that the latter is as
short as possible. However, there can be multiple states at the same distance, and, moreover,
multiple transfer sequences leading to the same state. At first glance, it might seem indifferent
which transfer sequence we choose apart from privileging short ones. We take advantage of
the missing specification. We assume that transfer sequences are chosen in the most “unlucky”
or adversarial way possible.

Certainly, there is no reason to assume that transfer sequences are chosen in a very specific,
disadvantageous way. Most implementations implicitly choose the same transfer sequence for
a pair of states. The purpose of our case is, however, to illustrate, how counterexamples can be
ineffective.

We first describe the system under inference. We then show inductively, that a larger con-
jecture is obtained with every subinference, and that the characterization set𝑊 (𝑖+1) obtained
after subinference 𝑖 and the counterexample processing is𝑊 (𝑖+1) =

{
𝑏 𝑗𝑐

�� 0 ≤ 𝑗 ≤ 𝑖
}
.

System under inference

Consider the finite state machineM shown in Figure 3.3. It consists of five states 𝑄 = {𝑞ℎ, 𝑞𝑐 ,
𝑞0, 𝑞1, 𝑞𝑥 }, the input alphabet 𝐼 = {𝑎, 𝑏, 𝑐} and the output alphabet 𝑂 = {0, 1, 2, 3}. From every
state there is a transition to state 𝑞ℎ by input 𝑐 . The sequence ℎ B 𝑐 is thus trivially a homing
sequence and ∀𝑟 : 𝐻 (𝑟 ) = 𝑞ℎ . 𝑐 is also a distinguishing sequence for all states except for 𝑞0
and 𝑞1, since 𝜆(𝑞0, 𝑐) = 0 = 𝜆(𝑞1, 𝑐). Inference starts in state 𝑞ℎ with empty ℎ and 𝑐 . In the first
iteration, a daisy machine with the loops 𝑎/0, 𝑏/0 and 𝑐/0 is inferred and the machine is again
in state 𝑞ℎ . Let the first counterexample be 𝑐/2. After this, we have ℎ = 𝑐 and𝑊 = {𝑐}.

3.2.1 Subinference 0

In the next subinference, which we indicate as subinference with index 𝑖 = 0, the states 𝑞ℎ , 𝑞𝑐
and 𝑞𝑥 are correctly characterized as conjecture states 𝑝ℎ , 𝑝𝑐 and 𝑝𝑥 .

The states 𝑞0 and 𝑞1 are merged as a conjecture state 𝑝0 B {𝑐 ↦→ 0}. Since homing always
leads to 𝑝ℎ , learning transitions from 𝑝0 requires a transfer from 𝑝ℎ to 𝑝0. Two transfer se-
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𝑞ℎ

𝑞𝑐

𝑞1

𝑞0

𝑞𝑥

𝑎/0

𝑏/0
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𝑏/0

𝑎/0

𝑏/0

𝑎/0
𝑏/0

𝑎/0
𝑏/0

𝑐/2

𝑐/3

𝑐/0

𝑐/0

𝑐/1

Figure 3.3 Example FSM for infinite inference.

quences of shortest length come in question: 𝛼1 = 𝑎𝑎 and 𝛼2 = 𝑎𝑏, where 𝛼1 leads in fact to
𝑞0, and 𝛼2 to 𝑞1. Depending on the choice of the transfer sequence, we get different results for
the transition, namely 𝛼1/00.𝑎𝑐/00 and 𝛼2/00.𝑎𝑐/01. That is, if we choose 𝛼1 we learn a loop
𝑝0

𝑎/0
−−→ 𝑝0, whereas with 𝛼2 we learn 𝑝0

𝑎/0
−−→ 𝑝𝑥 . Suppose we always choose 𝛼1 for transfers to

𝑝0. We end up with the conjecture depicted in Figure 3.4a.
At this point, hW-inference queries the counterexample oracle. Let the first counterexample

be 𝑐0 = ℎ/−.𝑎𝑎𝑎/000.𝑏𝑐/00. This triggers a 𝑊 -inconsistency with the sequence ℎ/−.𝑏𝑏𝑐/001
that was applied before when learning transition 𝑏 from state 𝑝𝑥 , as 𝛿 (𝑝ℎ, 𝑎𝑎𝑎) = 𝛿 (𝑝ℎ, 𝑏) = 𝑝𝑥

and we observe 𝑝𝑥 !𝑏𝑐/00 and 𝑝𝑥 !𝑏𝑐/01. As a consequence,𝑊 is extended by 𝑏𝑐 .
The key idea is this: The last counterexample showed that 𝛿 (𝑝0, 𝑎) ≠ 𝑝𝑥 , but not that

𝛿 (𝑝𝑐 , 𝑎) ≠ 𝛿 (𝑝𝑐 , 𝑏). Since the ambiguous state 𝑝0 persists, we can construct a fake state 𝑝1
with 𝛿 (𝑝1, 𝑎) = 𝑝𝑥 in the next subinference (see Figure 3.4b). The next counterexample will
then disprove 𝛿 (𝑝1, 𝑎) = 𝑝𝑥 . It is ineffective and we can continue forever.

3.2.2 i-th subinference (𝑖 > 0)

In sub inference 𝑖 , we know by the induction hypothesis, that the new characterization set is
𝑊 (𝑖 ) = {𝑤 𝑗 } = {𝑏 𝑗𝑐}0≤ 𝑗≤𝑖 .
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𝑝ℎ :
𝑐 ↦→ 2

𝑝𝑐 :
𝑐 ↦→ 3

𝑝0:
𝑐 ↦→ 0

𝑝𝑥 :
𝑐 ↦→ 1

𝑎/0

𝑏/0

𝑎/0

𝑏/0

𝑎/0

𝑏/0

𝑎/0
𝑏/0

(a) subinference 0

𝑝ℎ

𝑝𝑐
𝑐 ↦→ 0
𝑏𝑐 ↦→ 00

𝑝0

𝑐 ↦→ 1
𝑏𝑐 ↦→ 00

𝑝1

𝑐 ↦→ 1
𝑏𝑐 ↦→ 01

𝑝𝑥

𝑎/0

𝑏/0
𝑎/0
𝑏/0

𝑎/0

𝑏/0 𝑎/0

𝑏/0

𝑎/0

𝑏/0

(b) subinference 1

Figure 3.4 Conjecture after subinference 0 with ℎ = 𝑐 and𝑊 = {𝑐}. From every state, there is a
transition leading to 𝑝ℎ by input 𝑐 , which is not drawn. The characterizations of the states
learned during inference are noted inside each state. The red parts of the conjecture are
subject to the choice of a transfer sequence between 𝑝ℎ and 𝑝0.

Conjecture

Before we describe the inferred conjecture, observe a property ofM: If an input that obeys the
regular expression 𝑡 = 𝑎𝑥𝑎(𝑎 |𝑏)∗𝑐 with 𝑥 ∈ {𝑎, 𝑏} is applied to state 𝑞ℎ , the output is

𝜆(𝑞ℎ, 𝑡) =
{

0 |𝑡 |−10 if 𝑥 = 𝑎

0 |𝑡 |−11 if 𝑥 = 𝑏

When hW-inference infers states that are only reached by passing through 𝑝0 and are connected
by transitions of the inputs 𝑎 and 𝑏, the transfer and transitions sequences only contain the
inputs 𝑎 and 𝑏. Since all characterization sequences are of the form 𝑏∗𝑐 , the characterization of
states depends entirely on the choice of the transfer 𝑥 from 𝑝𝑐 to 𝑝0.

Using this observation, we can infer arbitrary states with characterizations {𝑏 𝑗𝑐 ↦→ 0𝑗𝑐 𝑗 }0≤ 𝑗≤𝑖
where 𝑐 𝑗 ∈ {0, 1} by choosing the right transfer sequences. Figure 3.5 shows the structure of
the conjecture. We learn the same states as in the (𝑖 − 1)-th subinference and a new state
𝑝𝑖 , which is reached by the transition 𝑎/0 from 𝑝𝑖−1. The characterization of the new state is
𝜙 (𝑝𝑖) =

{
𝑏𝑙𝑐 ↦→ 0𝑙1

�� 0 ≤ 𝑙 ≤ 𝑖
}
∪ {𝑏𝑖𝑐 ↦→ 0𝑖0}. It thus is in line with the counterexample after

the previous subinference, in which we observed the trace 𝑎/0.0𝑏𝑖/0𝑖 .𝑐/0 from state 𝑝𝑖−1. The
characterizations of the other states 𝑝 𝑗 ( 𝑗 < 𝑖) are extended by 𝑤𝑖 ↦→ 0𝑖0.

For every state 𝑝 𝑗 ( 𝑗 < 𝑖), the transition 𝑎/0 leads to the state 𝑝 𝑗+1, and the transition 𝑏/0
leads to 𝑝 𝑗−1, except for 𝑝0, where we loop for 𝑏, i.e. 𝛿 (𝑝0, 𝑏) = 𝑝0 and �̃�(𝑝0, 𝑏) = 0. For every
state there is a transition 𝛿 (𝑝, 𝑐) = 𝑝ℎ .
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𝑝ℎ

𝑝𝑐

𝑐 ↦→ 0
. . .

𝑏𝑖𝑐 ↦→ 0𝑖0

𝑝0

𝑐 ↦→ 1
. . .

𝑏 𝑗𝑐 ↦→ 0𝑗1
𝑏 𝑗+1𝑐 ↦→ 0𝑗+10

. . .

𝑏𝑖𝑐 ↦→ 0𝑖0

𝑝 𝑗 ( 𝑗 < 𝑖)

𝑐 ↦→ 1
. . .

𝑏𝑖−1𝑐 ↦→ 0𝑖−11
𝑏𝑖𝑐 ↦→ 0𝑖0

𝑝𝑖

𝑐 ↦→ 1
. . .

𝑏𝑖𝑐 ↦→ 0𝑖1

𝑝𝑥

. . . . . .
𝑎/0

𝑏/0

𝑎/0
𝑏/0

𝑎/0

𝑏/0 𝑎/0

𝑏/0

𝑎/0

𝑏/0

𝑎/0

𝑏/0

Figure 3.5 Conjecture in subinference 𝑖 (transitions by 𝑐 to 𝑝ℎ are not drawn). The characterization
𝜙 of nodes are written within the states, fake states are drawn in red. The counterexample
is 𝑎𝑎/00.𝑎𝑖/0𝑖 .𝑎/0.𝑏𝑖𝑐/0𝑖+1

Counterexample

After subinference 𝑖 , we provide as counterexample 𝑐𝑖 = 𝑎𝑎𝑎𝑖𝑎𝑏𝑖𝑐 from state 𝑝ℎ . The coun-
terexamples transfers to conjecture state 𝑝𝑥 by 𝑝𝑖 and then applies 𝑏𝑖𝑐 .

𝑝ℎ
𝑎𝑎/00
−−−−→ 𝑝0

𝑎𝑖/0𝑖
−−−→ 𝑝𝑖

𝑎/0
−−→ 𝑝𝑥

𝑏𝑖−−→ 𝑝𝑥
𝑏𝑖/0𝑖
−−−→ 𝑝𝑥

𝑐/0
−−→ inconsistent

Since the real system is in state 𝑝0 after the first 𝑎𝑎, the output to the suffix 𝑏𝑖−1𝑐 is 0𝑖 . The
counterexample hence triggers a𝑊 -inconsistency with the trace ℎ/−.𝑏/0.𝑏/0.𝑏𝑖𝑐/0𝑖1 that was
applied when learning transition 𝑏/0 from state 𝑝𝑥 . 𝑊 is thus extended by 𝑏𝑖+1𝑐 .

Consistency

It is left to show that the construction we described does not lead to any inconsistencies other
than the inconsistencies triggered by the counterexamples.

First of all, h-inconsistencies cannot occur, as ℎ = 𝑐 is a valid homing sequence.
Since in subinference 𝑖 we discover the same states 𝑝ℎ, 𝑝𝑐 , 𝑝𝑥 and 𝑝0, . . . 𝑝𝑖−1 as in subin-

ference 𝑖 − 1, the traces to learn the characterizations 𝑤0 . . .𝑤𝑖−1 are identical. For the new
characterization sequence 𝑤𝑖 , for any state 𝑝 𝑗 the application of 𝑤𝑖 is identical with the appli-
cation 𝑏𝑤𝑖−1 executed in subinference 𝑖 −1 to learn 𝛿 (𝑝 𝑗 , 𝑏). Moreover, the optimization Search
Counterexamples in the Trace [Gro+20] checks whether the traces applied during learning are
consistent with the conjecture. This is ensured by the backward transitions 𝛿 (𝑝 𝑗 , 𝑏) = 𝑝 𝑗−1,
because 𝜙 (𝑝 𝑗 ) (𝑏𝑘𝑐) = 0.𝜙 (𝑝 𝑗 − 1) (𝑏𝑘−1𝑐).
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𝑞ℎ1

𝑞ℎ2

𝑞0
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𝑞5

ℎ/𝑟1

ℎ/𝑟2

𝑡/𝑥

𝑡/𝑥

𝑝0

Figure 3.6

Finally, the new conjecture 𝑖 + 1 must be consistent with the (𝑖 − 1)-th counterexample. The
(𝑖 − 1)-th counterexample observed 𝑝𝑖−1 !𝑎/0.𝑏𝑖/0𝑖 .𝑐/0. The new state 𝑝𝑖 = 𝛿 (𝑝𝑖−1, 𝑎) with
𝜙 (𝑝𝑖) (𝑏𝑖𝑐) = 0𝑖0 thus maintains consistency with the counterexample trace.

3.3 Preliminary Findings and Outlook

Groz et al. did not specify which transfer sequence is applied if there are multiple sequences
of the same length, as it seemed to be indifferent. We have now seen that in fact choosing
transfer sequences in a very specific way can enable an infinite inference and thus threatens the
algorithm’s correctness. There is nevertheless no reason why one would allow to use different
transfer sequence between the same states at different time, i.e. by choosing a transfer sequence
randomly. We say the choice of transfer sequences is consistent, if we always take the same
transfer path for every pair of states. A straightforward implementation is to sort the transfer
sequences of shortest length lexicographically and to always take the first one. This prohibits
constructions as the one we presented, since the algorithm would always reach 𝑝0 by 𝑎𝑎 and
be in the state 𝑞0.

While a consistent choice of transfer sequences is a necessary condition of termination, we
do not know if it is also sufficient. Our example illustrated in detail the problem with ineffective
counterexamples, that we sketched in Section 3.1: A𝑊 -inconsistency may lead to a refinement
of 𝑊 without distinguishing more real states than before. In our case, all sequences of form
𝑏∗𝑐 do not distinguish 𝑞0 and 𝑞1, while all other states in𝑄\{𝑞0, 𝑞1} were already distinguished
by𝑊 .

There could be machines similar toM, where 𝑞0 and 𝑞1 are reached from different homing-
tail states (see the sketch in Figure 3.6). The characterization of states reached through 𝑝0
depends on the order in which the traces ℎ/𝑟1 and ℎ/𝑟2 occur. If ℎ is not homing, the analogous
problem might occur with an ℎ-ambiguous state such as in Figure 3.1a. In both cases, hW-
inference would not terminate, even though transfer sequences are chosen consistently.

So a proof of correctness of hW-inference must in particular rule out the possibility that we
visit an ambiguous state in an order that leads to the construction of arbitrarily many fake
states. We neither found an example in which such a bad visiting order did occur, nor could
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we exclude its possibility. So this remains an open challenge for any further research on hW-
inference.

One possible attempt we pursued was to show that the number of different orders in which
two real states (such as 𝑞0 and 𝑞1 in the previous example) can be visited during hW-inference
is bounded. The order in which we visit states depends on the order in which homing responses
𝑟 ∈ dom(𝐻 (𝑟 )) occur. The next homing response is determined by the tail state of the appli-
cation of one sequence 𝑤 ∈𝑊 at the end of previous iteration of the backbone algorithm. For
each partial state, there is an index pointing to the next sequence in 𝑤 ∈ 𝑊 to be applied to
this state. If there are 𝑘 partially characterized states, we have |𝑊 |𝑘 different combinations of
next sequences 𝑤 to apply. Hence the number of possible orders in which homing responses
occur, grows with the size of𝑊 . This indicates that the number of visiting orders of ambiguous
states and thus the number of different characterizations of fake states is unbounded. We were
however not able to construct an example that leverages this effect to learn a conjecture with
size increasing in |𝑊 |, which is also consistent with the trace.
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4 h-forests

In Chapter 3 we saw that our present understanding of hW-inference is still incomplete. We
could not rule out the possibility of finite state machines on which inference does not terminate
for an infinite sequence of counterexamples. To mitigate this issue we propose an adapted
version of hW-inference, h-forests, that infers provably a correct model, if ℎ is homing.

Ineffective counterexamples require the existence of fake states. A necessary condition of
fake states is to learn states passing through ambiguous states. The idea of h-forests is to choose
transfer sequences in a more conservative way than hW-inference and thus to avoid passing po-
tentially𝑊 -ambiguous states are avoided. Under the assumption that ℎ is homing, we present
the algorithm (Section 4.1) and prove its termination (Section 4.2). In Section 4.3, we sketch
how to possibly overcome this assumption with a probabilistic search for ℎ-inconsistencies.

4.1 Method

From now on, we assume that ℎ is a correct homing sequence. Consequently, for any sequence
𝛼 ∈ 𝐼 ∗, the trace ℎ/𝑟 .𝛼/𝑥 has a unique tail state. The core idea of h-forests is to access every
conjecture state only by a single path along a tree rooted in 𝐻 (𝑟 ), hence the name. This idea is
implemented by the following adaptions to hW-inference.

1. Every conjecture state is labeled with a response to ℎ. The function root(𝑝) indicates the
label for state 𝑝 . Whenever we observe a full characterization for the first time, viz. learn
a new state, this state is labeled. A new tail state 𝑝 = 𝐻 (𝑟 ) after homing is labeled with
root(𝑝) = 𝑟 . A new state after a transition 𝑝 = 𝛿 (𝑝′, 𝑡) is labeled as its predecessor, i.e.
root(𝑝) = root(𝑝′). The transition from 𝑝′ to 𝑝 is called a tree edge. We call the set of
nodes with label 𝑟 the tree of 𝑟 : 𝑇 (𝑟 ) =

{
𝑝 ∈ �̃�

�� root(𝑝) = 𝑟
}
.

If we learn a homing tail state 𝐻 (𝑟 ′) and there already exists a state 𝑝 with 𝜙 (𝑝) =

𝜙 (𝐻 (𝑟 ′)), we set 𝐻 (𝑟 ′) =⊥ to indicate that 𝑇 (𝑟 ′) = ∅.

2. When choosing a shortest transfer sequence 𝜏 = (𝐻 (𝑟 ), ..., 𝑝) from 𝐻 (𝑟 ) to learn a tran-
sition 𝛿 (𝑝, 𝑡), 𝜏 must only contain tree edges. If there are multiple shortest transfer se-
quences of the same length, choose the lexicographically smallest sequence.

3. A tree 𝑇 (𝑟 ) is complete, if no state in 𝑇 (𝑟 ) has a transition to a partial state. If we are in
state 𝐻 (𝑟 ) after homing, and 𝑇 (𝑟 ) is complete, we apply a sequence 𝛼/−.ℎ/𝑟 ′, such that
𝑇 (𝑟 ′) is incomplete. If the conjecture is not connected, ask for a counterexample.

4. There are at least two characterization sequences in𝑊 , i.e., |𝑊 | ≥ 2. Initially, these can
be symbols in 𝐼 , ℎ or random input sequences.
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𝑏
𝑏

𝑎
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𝑏

𝑎

𝑏

𝑎

𝑎

𝑏

Figure 4.1 Sample conjecture searchedwith the h-forestsmethod. Tree-edges are drawn in red. Only
those are used in transfer sequences to partial states.

One can think of the conjecture as of a forest of BFS-trees (Breadth First Search) that are
rooted in the homing tail states. Figure 4.1 contains an example. Conditions 1 and 2 ensure
that there is a uniquely defined tree-path to reach every node from a homing tail state. This
path only consists of tree-edges of the BFS-tree. Cross-edges or backward-edges within a BFS-
tree as well as transitions between trees are not traversed in transfer sequences. This is the
main difference to hW-inference, which allows to use all kind of edges in transfer sequences.

4.1.1 Find Transfers

Compared to original hW-inference, h-forests restricts the way to transfer to a state with un-
known transitions. Condition 3 demands that if the current BFS-tree is complete, we can trans-
fer to the root of another partial tree. Suppose, for instance, we are in state𝐻 (𝑟1) in the conjec-
ture drawn in Figure 4.1. Then we may not traverse directly to one of the states with unknown
transitions, but must first apply an input sequence 𝛼 with 𝐻 (𝑟1) !𝛼/−.ℎ/𝑟2. We now show that
condition 3 is satisfiable, if the conjecture is connected.

Suppose we have observedℎ/𝑟1 and all states reachable by tree-edges are fully characterized.
Then there must be a transition 𝑝2 = 𝛿 (𝑝1, 𝑡) (root(𝑝1) = 𝑟1 and root(𝑝2) = 𝑟2 ≠ 𝑟1) to another
tree or the conjecture is not connected. Let 𝜏 be the unique tree-path from 𝐻 (𝑟2) to 𝑝2. Since
𝑝2 was labeled with 𝑟2, and |𝑊 | ≥ 2, we have already traversed two times from 𝐻 (𝑟2) to 𝑝2. We
thus observed ℎ/𝑟2.𝜏/−.𝑤1/−.𝛼/−.ℎ/𝑟2.𝜏/−.𝑤2/− before with some sequence 𝛼 . We can now
transfer to the other tree, by going from 𝐻 (𝑟1) to 𝑝1 and then applying 𝑡 .𝑤1.𝛼 .ℎ. This yields
ℎ/𝑟 ′ and transfers to the other tree. If𝑇 (𝑟2) is complete, there must be a transfer to the root of
another tree with label 𝑟3 by the same argument. Eventually we must reach the tree containing
a partial state.
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4.2 Termination

We show that hW-inference h-forests terminates and infers a correct conjecture, by showing
two Lemmas.

Bounded Conjecture Size

Lemma 4.1 For every conjecture state 𝑝 ∈ �̃� , there is at least one real state 𝑞 ∈ 𝑄 , with 𝜙 (𝑝) =
𝜙 (𝑞). There is a mapping 𝜋 : �̃� → 𝑄 , that maps a conjecture state to a corresponding real state.

Proof: Since ℎ is homing, ℎ/𝑟 has a unique tail state. Consequently, for every input sequence
𝜏 , the trace ℎ/𝑟 .𝜏/− has a unique tail state as well. When learning a state 𝑝 for the first time,
we go by a unique path ℎ/𝑟 .𝜏/− of tree-edges before applying each 𝑤 ∈𝑊 . As a consequence,
𝜙 (𝑝) = 𝜙 (𝑞), where 𝑞 is the tail state of ℎ/𝑟 .𝜏/− and we can set 𝜋 (𝑝) = 𝑞. □

A direct consequence of Lemma 4.1 is that the number of conjecture states is bounded by
the number of states of the real system: |�̃� | ≤ 𝑛. The conjecture cannot have any fake states.

Finding New States

The intuitive idea of 𝑊 -inconsistencies is to unveil that at some point during inference two
states were perceived as one state. The refinement of 𝑊 aims at “splitting up” the conjecture
state by distinguishing real states that were not distinguished before. In order to formally
proof the notion of splitting up states, we have to define a relation between states in different
subinferences.

Definition 4.1 (Child states) Let �̃� (𝑖 ) and𝑊 (𝑖 ) be the set of states and the characterization set
in the 𝑖-th subinference. For any following subinference 𝑗 > 𝑖 , we define the child states 𝑐 (𝑝)
of a state 𝑝 ∈ �̃� as the states that have the same characterization as 𝑝 with respect to𝑊 (𝑖 ) , i.e.
𝑐 (𝑝) =

{
𝑝′ ∈ �̃� ( 𝑗 )

��𝜙 |𝑊 (𝑖 ) (𝑝′) = 𝜙 (𝑝)
}
.

Note that a state 𝑝 ∈ �̃� (𝑖 ) does not necessarily have a child state in subinference 𝑖 + 1. This
is possible, if we observe completely different homing responses in subinference 𝑖 + 1 than in
subinference 𝑖 and the state machine is not connected for the current𝑊 . However, because of
Lemma 4.1 the possible characterizations of conjecture states are restricted to characterizations
of the real states. So for some later inference 𝑗 > 𝑖 , there must be a child state of 𝑝 .

If a state in subinference 𝑖 has more than a single child state in subinference 𝑗 , this means
that𝑊 ( 𝑗 ) distinguishes more states than𝑊 (𝑖 ) . On the other hand, if𝑊 (𝑖 ) already distinguishes
a state 𝑞 from all other states, the state 𝑝 with 𝜋 (𝑝) = 𝑞 can only have a single child state
for every refinement 𝑊 ( 𝑗 ) of 𝑊 (𝑖 ) (otherwise there would be two states with 𝑞1 ≠ 𝑞2 with
𝜙 |𝑊 (𝑖 ) (𝑞1) = 𝜙 |𝑊 (𝑖 ) (𝑞2)). We can use this observation to detect 𝑊 -inconsistencies: If a state
𝑝 (𝑖 ) ∈ �̃� (𝑖 ) has only a single child state 𝑝 ( 𝑗 ) ∈ �̃� ( 𝑗 ) ( 𝑗 > 𝑖), and we observe sequences 𝑝 (𝑖 ) ! 𝛽/𝑦1
and 𝑝 ( 𝑗 ) ! 𝛽/𝑦2 with 𝑦1 ≠ 𝑦2, we extend𝑊 ( 𝑗 ) by the shortest suffix in 𝛽 , that is not yet in𝑊 ( 𝑗 ) .

With this extended notion of𝑊 -inconsistencies, we can show:
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Lemma 4.2 Every counterexample and the ensuing refinement of 𝑊 increases the number of
states distinguished by𝑊 .

Suppose a counterexample in subinference 𝑖 triggers the 𝑊 -inconsistency 𝜎1 = ℎ/𝑟1.𝛼1/−.
𝛽/𝑦1 and 𝜎2 = ℎ/𝑟2.𝛼2/−.𝛽/𝑦2 with 𝑦1 ≠ 𝑦2 and 𝛿 (𝐻 (𝑟1), 𝛼1) = 𝛿 (𝐻 (𝑟2), 𝛼2). As a consequence
𝑊 (𝑖 ) is refined: The shortest suffix 𝛾 of 𝛽 that is not yet in𝑊 (𝑖 ) is added to𝑊 (𝑖 ) .

After 𝛾 was added to 𝑊 , we are in one of the following cases. We show that in every case
either 𝑊 (𝑖 ) ∪ {𝛾} distinguishes more states, or another 𝑊 -inconsistency is triggered and a
longer suffix 𝑡𝛾 of 𝜎1 or 𝜎2 is added to𝑊 . After this refinement we are again in one of the cases
below, until eventually𝑊 distinguishes more states or contains 𝛼1𝛽 or 𝛼2𝛽 .

Let 𝑝 ∈ �̃� (𝑖 ) be the state, in which 𝛾 was applied during the counterexample.

1. 𝑝 has the same predecessor state 𝑝′ in both traces 𝜎1 and 𝜎2 with 𝛿 (𝑝′, 𝑡) = 𝑝 . This is
necessarily the case for the common tail of both traces, i.e. if 𝛾 is a real suffix of 𝛽 .
In this case, let 𝑗 > 𝑖 be the next subinference, in which a child state 𝑝′( 𝑗 ) of 𝑝′ appears.
If 𝑝′ has more than one child state,𝑊 ( 𝑗 ) distinguishes more states than𝑊 (𝑖 ) and we are
done. Otherwise, we can assume that 𝑝′( 𝑗) is the single child of 𝑝′. We thus check for
inconsistencies between both. Because 𝛾 ∈ 𝑊 ( 𝑗 ) , we apply 𝑡𝛾 to 𝑝′( 𝑗) to learn the tail
state of transition 𝑡 and get response 𝑧. During the counterexample we have observed
two different traces 𝑝′ ! 𝑡𝛾/𝑧1 and 𝑝′ ! 𝑡𝛾/𝑧2 (𝑧1 ≠ 𝑧2) in 𝑝′. So 𝑧 is unequal with either 𝑧1
or 𝑧2, which yields another𝑊 -inconsistency.

2. 𝑝 has a different predecessor states 𝑝1 in 𝜎1 and 𝑝2 in 𝜎2, with 𝛿 (𝑝1, 𝑡1) = 𝑝 and 𝛿 (𝑝2, 𝑡2) =
𝑝 This is the case in the state, where both traces meet.
Let 𝑗 > 𝑖 be the next subinference, in which child states 𝑝 ( 𝑗 )1 and 𝑝

( 𝑗 )
2 of both, 𝑝1 and 𝑝2

occur. As in case 1 we can assume that 𝑝 ( 𝑗 )1 and 𝑝
( 𝑗 )
2 are single child states.

Both states must have a subsequent state 𝑝
′( 𝑗 )
1 = 𝛿 (𝑝 ( 𝑗 )1 , 𝑡1) and 𝑝

′( 𝑗 )
2 = 𝛿 (𝑝 ( 𝑗 )2 , 𝑡2). 𝑝′( 𝑗 )1

must be a child state of 𝑝 . If it is not a child state of 𝑝 , then for some 𝑤 ∈ 𝑊 (𝑖 ) the
responses for 𝑝1 ! 𝑡𝑤 and for 𝑝 ( 𝑗 )1 ! 𝑡𝑤 deviate. By Lemma 4.1 there are then two states
𝑞, 𝑞′ ∈ 𝑄 with 𝜙 |𝑊 (𝑖 ) (𝑞) = 𝜙 |𝑊 (𝑖 ) (𝑞′), but 𝜆(𝑞′, 𝑡1𝑤) ≠ 𝜆(𝑞, 𝑡1𝑤). In this case, we extend
𝑊 by 𝑡𝑤1 and increase the number of states distinguished by𝑊 . Analogously, 𝑝′( 𝑗 )2 must
be a child state of 𝑝 as well. If 𝑝 does not have more than a single child, this means that
𝑝
′( 𝑗 )
1 = 𝑝

′( 𝑗 )
2 .

The transitions from 𝑝
( 𝑗 )
1 and 𝑝

( 𝑗 )
2 lead to the same state and this state only has one

response to 𝛾 ∈ 𝑊 ( 𝑗 ) . Thus, either learning the transition 𝑡1 from 𝑝
( 𝑗 )
1 is inconsistent

with 𝜎1 or learning the transition 𝑡2 from 𝑝
( 𝑗 )
2 is inconsistent with 𝜎2. 𝑊 ( 𝑗 ) is extended

by 𝑡1𝛾 or 𝑡2𝛾 .

3. 𝑝 has only a predecessor state 𝑝′ in one of the traces 𝜎1 or 𝜎2, with 𝑝 = 𝛿 (𝑝′, 𝑡). This is
the case for the part of the traces, before they reach the same state.
Without loss of generality, assume that 𝑝′ only appears in 𝜎1. The inconsistency in 𝑝 then
must have occurred when learning a transition. There are thus traces ℎ/𝑟1.𝛼

′
1/−.𝛾/𝑦1,
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which is a suffix of 𝜎1 and ℎ/𝑟3.𝜏/−.𝛾/𝑦2, which was executed when learning the transi-
tion 𝑡 from 𝑝′, and 𝛿 (𝐻 (𝑟1), 𝛼 ′1) = 𝛿 (𝐻 (𝑟3), 𝜏) = 𝑝 .
As in the other cases, let 𝑝′( 𝑗 ) be the single child state of 𝑝′ in a later subinference. We
apply 𝑝′( 𝑗 ) ! 𝑡/−.𝛾/𝑧 to learn transition 𝑡 from 𝑝′( 𝑗 ) . If 𝑧 = 𝑦1, the number of states
distinguished by 𝑊 was increased by adding 𝛾 to 𝑊 , since we had 𝜙 (𝑝) (𝛾) = 𝑦2 in the
previous subinference. If 𝑧 = 𝑦1, there is an inconsistency with the trace 𝜎1 and we
extend𝑊 ( 𝑗 ) by 𝑡𝛾 .

If the number of states distinguished by 𝑊 does not increase, we thus keep adding longer
suffixes of 𝜎1 or 𝜎2 to𝑊 . Eventually, there is a𝑊 -inconsistency with 𝛼1𝛽 or 𝛼2𝛽 right afterℎ/𝑟1
or ℎ/𝑟2, respectively. However, this would be an ℎ-inconsistency which contradicts the fact,
that ℎ is homing. So the refinement of adding some suffix of 𝜎1 or 𝜎2 must have had increased
the number of states distinguished by𝑊 . □

Therefore, every counterexample increases the number of conjecture states by Lemma 4.2.
Thus, after at most 𝑛 counterexamples,𝑊 distinguishes 𝑛 conjecture states. Due to Lemma 4.1,
every conjecture state has the characterization of a real state and thus the conjecture is correct.

4.3 Find ℎ

Suppose now, that ℎ is not homing, but we are provided with an upper bound 𝑛 ≤ |𝑄 | on the
number of states of the system under inference. Since ℎ is not homing, Lemma 4.1 does not
hold true anymore and there can be fake states in the conjecture.

We can use a similar procedure as Rivest and Schapire [RS93]. As soon as there are 𝑛 + 1
conjecture states, we know that ℎ is not homing and that there must be at least one fake state.
At this point, we can stop inference and start searching actively for an ℎ-inconsistency.

Let 𝑝 𝑓 be a fake state and 𝜏/𝑥 the tree path from the root 𝐻 (𝑟 𝑓 ) to 𝑝 𝑓 (𝑟 𝑓 = root(𝑝 𝑓 )). Then
there must be at least two states 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 such that ∀1 ≤ 𝑖 ≤ 𝑘 : 𝜆(𝑞𝑖 , ℎ𝜏) = 𝑟 𝑓 𝑥 and
𝑞′1 = 𝛿 (𝑞1, ℎ𝜏), . . . , 𝑞′𝑘 = 𝛿 (𝑞2, ℎ𝜏) are pairwise distinct. Because 𝑝 𝑓 is a fake state, for every state
𝑞′𝑖 (1 ≤ 𝑖 ≤ 𝑘), there is a sequence 𝑤 ∈ 𝑊 , such that 𝜆(𝑞′𝑖 ,𝑤) ≠ 𝜙 (𝑝 𝑓 ) (𝑤). This observation
suggests a strategy to find an ℎ-inconsistency:

1. Choose at random a conjecture state 𝑝 . Apply a transfer sequence to 𝑝 , such that the
trace ends with ℎ/root(𝑝) .𝜏/−, where 𝜏 is tree path of 𝑝 .

2. Choose at random a sequence𝑤 ∈𝑊 and apply it to 𝑝 . If we observe a response different
to 𝜙 (𝑝) (𝑤) an ℎ-inconsistency is found.

With probability of at least 1
𝑛+1 we pick the fake state 𝑝 = 𝑝 𝑓 and with probability 1

|𝑊 | we choose
a sequence, that triggers anℎ-inconsistency. If we repeat the procedure |𝑊 | (𝑛+1) ln(1/𝜖) times,
the probability to find an ℎ-inconsistency is:

1 −
(
1 − 1
|𝑊 | (𝑛 + 1)

) |𝑊 | (𝑛+1) ln(1/𝜖 )
≥ 1 − 1

𝑒

ln(1/𝜖 )
= 1 − 𝜖
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After every ℎ-inconsistency, ℎ is refined. After at most 𝑛 refinements, ℎ is homing (see Section
2.2).

However, we do not know a bound on |𝑊 |. In Section 4.2 we saw, that if ℎ is homing, the
number of counterexamples is bound by 𝑛 and we add not more than all suffixes of a coun-
terexample to𝑊 . This would imply a bound of |𝑊 | ≤ 𝑛𝜃 , where 𝜃 is the length of the longest
counterexample. Nevertheless, we do not know whether this fact still holds true if ℎ is not
homing.

In order to use the approach sketched above one has to show, that if ℎ is not homing after a
bounded number of counterexamples there are more than 𝑛 + 1 conjecture states. We suppose
that this is true, but have not worked out a technical proof yet.

4.3.1 Extending to Unknown n

In black-box inference, we do not know a priori an upper bound on the number of states 𝑛.
We can work around this restriction by starting with an initial estimate for 𝑛. Every time the
conjecture has 𝑛 + 1 states, but we cannot find an ℎ-inconsistency, we double the estimate of 𝑛.
After at most log2(𝑛) refinements, the estimated bound is greater or equal to the real bound.

Summary

We conclude the main contributions of this chapter.

1. The h-forests modification ensures termination in the setting of a minimally adequate
teacher, if it finds a correct homing sequence. This partially solves the problem of inef-
fective counterexamples.

2. If we can show that the number of conjecture states necessarily exceeds 𝑛, if ℎ is not
homing, we can find homing sequence with a probabilistic strategy.
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5 Heuristic: W-set pruning

5.1 Motivation

In the example in Chapter 3 new sequences are added to𝑊 , without distinguishing more states
of the system under inference. This observation raises a more general problem: With every𝑊 -
inconsistency either a new sequence is added to𝑊 or an already present sequence is extended.
However, we never remove sequences in 𝑊 that are distinguished by sequences that were
added later. As we will later see, experiments confirm that the size of𝑊 varies a lot depending
on the provided counterexamples (Section 6.2.2). This translates to a large variation regarding
the length of the total trace (see Figure 6.2).

There are two measures to which refer by the term “size of𝑊 ”: the number of sequences in
it and their average length. To learn a transition, we apply an input sequence ℎ.𝛼 .𝑤 for every
sequence 𝑤 ∈𝑊 , so the number of input-output-queries depends linearly on both measures.

5.2 Strategy

Our idea is to reduce the𝑊 -set based on the conjecture. We demand that the reduced𝑊 -set is
still a characterizing set for the inferred conjecture. There are two approaches how to obtain
such a reduced𝑊 -set.

Compute W from Scratch One approach is to compute a characterization set for the cur-
rent conjecture from scratch. Although the problem of finding a minimal characterization set
for a FSM is pspace-Complete [BJT20], there are heuristic approaches to obtain a small𝑊 -set.
Indeed, we were able to compute a 𝑊 -set with a total length of no more than 12 symbols for
the complete Scanette FSM with such a heuristic. This is half the size of the smallest𝑊 -set for
Scanette found by hW.

However, in hW-inference using an entirely new characterization set in a later subinference
drastically limits the use of the dictionary optimization. The dictionary caches the responses
for input sequences ℎ.𝛼 .𝑤 . Since the same transfer sequences and characterization sequences
are applied across subinferences, this reduces the number of output queries significantly. By
replacing all sequences in 𝑊 , most dictionary entries become irrelevant. We found that on
average about 60 % of all transitions are looked up in the dictionary. In view of this impact of
the dictionary, we suppose that the advantage of having a smaller𝑊 would be outweighed by
the drastic reduce of dictionary look-ups.

Prune Existing W A different approach is to take the current 𝑊 as a starting point and
greedily shrink it while preserving its characterizing property (see pseudocode in Algorithm 3).
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Algorithm 3 W-set pruning
1: procedure pruneW(conjectureM′, current𝑊 -set𝑊 )
2: while ∃𝑤 ∈𝑊 : 𝑊 ←𝑊 \{𝑤} is characterizing forM′ do
3: 𝑊 ←𝑊 \{𝑤}
4: end while
5: while ∃𝑤 ∈𝑊 : (𝑊 \{𝑤}) ∪ {𝑤.𝑝𝑜𝑝𝐿𝑎𝑠𝑡 ()} is characterizing forM′ do
6: ⊲ 𝑤.𝑝𝑜𝑝𝐿𝑎𝑠𝑡 () returns a copy of 𝑤 without the last symbol
7: 𝑊 ← (𝑊 \{𝑤}) ∪ {𝑤.𝑝𝑜𝑝𝐿𝑎𝑠𝑡 ()}
8: end while
9: return𝑊

10: end procedure

In a first phase, we remove sequences from𝑊 one-by-one while the remaining𝑊 is still char-
acterizing forM′. In the second phase, we remove repeatedly the last input symbol of some
sequence in𝑊 , while the remaining𝑊 is still characterizing. The advantage of this approach
is that every sequence in the reduced 𝑊 -set is a prefix of some sequence in the prior 𝑊 -set.
We can thus reuse the entries in the dictionary.

We can reduce𝑊 with this procedure every time the backbone algorithm returns a conjec-
ture and before we apply the counterexample. This order is essential because the counterex-
ample contradicts by definition the conjecture. The characterization sequence found by the
counterexample thus would be removed during the pruning, which uses the conjecture as a
reference.

Moreover, sometimes an inconsistency leads to increasing the𝑊 -set but the same conjecture
is inferred in the next subinference. This can happen in particular for Moore locks [Moo56]. In
a Moore lock there is a pair of states that can only be distinguished by one specific sequence.
When a counterexample contains this sequence, we may only extend𝑊 by a suffix of it, which
will not distinguish more states. In this case, multiple counterexamples are needed until 𝑊
distinguishes a new sequence and the conjecture changes. We address this issue by only calling
the reduce𝑊 procedure when the conjecture has increased in size.
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6 Experiments

Previous experiments with hW-inference focused on randomly generated machines with up
to 3000 states and two inputs [Gro+20; GBS19] or case studies on real systems of small size
(|𝑄 | · |𝐼 | ≈ 100) [BG19]. In this chapter, we evaluate hW-inference on Scanette, a supermarket
scanner system that can be modeled by an FSM with 121 states and 15 inputs.

Before we present the numerical results in Section 6.2, we discuss challenges inferring an
abstract finite state model from a non-finite state system, such as Scanette (Section 6.1).

6.1 Case Study: Scanette

Scanette models a self-service system of scanners that are typically found in French supermar-
kets. Customers have a handheld scanning device, they use to scan the barcode on every item
they intend to buy. At the end of their shopping, they connect the scanner to a checkout and
pay the required amount on the checkout.

There are two complications to this standard procedure: Some products, e.g., loose fruits,
are unknown to the scanner and must be manually rescanned and weighed by a cashier. If
such a product is among the courses, a cashier logs into the checkout and scans the product.
Furthermore, there are controls on a random basis. With a certain probability the checkout
demands for verification upon connection of the scanner. During the verification phase, a
cashier rescans a sample of the items in the customer’s caddie.

The PHILAE project implemented a simulation of such a shop-scanner system in Java, which
is called Scanette. The classes Scanette and Checkout as listed in 6.1 give an overview
of the possible interactions of a client or cashier with the system. For a detailed specification
of Scanette, we refer the reader to [Phi19]1. In the following, we focus on the parts that are
challenging to write a proxy for finite state machine inference.

6.1.1 Abstracting FSM

Scanette is not equivalent to a finite state machine and thus we have to abstract from its be-
haviour in order to infer a model with hW-inference. This abstraction mainly happens in the
driver, the component that proxies the system under inference towards the learner.

Instantiation A Scanette system can consist of multiple scanner instances and checkout
instances. In our driver implementation we keep a single scanner 𝑠 and a single checkout
𝑐 . For each method in the Scanette and the Checkout class, the driver has one input symbol

1There is also a Javascript implementation to interact with Scanette in a game-like manner: https://
fdadeau.github.io/scanette/
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class Scanette –
int unlock()
int scan(long ean13)
int remove(long ean13)
void abandon()
int transmission(Checkout c)

class Checkout –
int connect(Scanette s)
double pay(double somme)
void abandon()
int openSession()
int closeSession()
int scan(long ean13)
int remove(long ean13)

Figure 6.1 The interfaces of the classes Scanette and Checkout document the possible inter-
action with the Scanette system.

upon which the method is called. Since Scanette#transmission calls internally the
Checkout#connect method of the parameter, it suffices to have one input symbol, that
calls 𝑠 .transmission(𝑐).

Input Concretization and Output Abstraction Most methods return status codes ( 0 for
“OK”, -1 for “wrong state”, etc.) that can be symbols in the output alphabet. The method
Checkout#pay gives the change or the remainder, if the sum payed was below the balance.
The driver abstracts the output by applying the signum function to the return value.

For methods, that take the bar code of an item as parameter, we add one input symbol for
the bar code of every item. To this end, we chose two representative items, i.e., one item that
is known to Scanette and one that has to be scanned by a cashier. For Checkout#pay we
add two input symbols, one that pays 0, and another one that pays exactly the balance.

Externalize Non-determinism When connecting 𝑠 to 𝑐 , the Scanette implementation de-
cides randomly, whether a verification is required. We add a boolean parameter to Scanette
#transmission that controls whether the verification phase is entered or not. Accord-
ingly, there are two inputs.

Although a client should not have the choice between these kinds of transition, it makes
sense, that a learner of the system can externally control the randomness in order to be able to
explore all states.

In total, the driver for Scanette has 15 different input symbols.

Counters Having a finite input and output alphabet does not yet guarantee, that the system
under inference is functionally equivalent to a finite state machine. In the case of Scanette,
implicit counters are a problem. Scanette counts how often an item was scanned. If a client
calls Scanette#remove with the article number of an item, that it is not in the basket, an
error code is returned. Thus, for any 𝑚 Scanette#scan(itemA)𝑚 leads to a state, that
can be identified by applying the sequence Scanette#remove(itemA)𝑚+1. Technically,
this number is only bounded by the size of Java integers used for counting, but clearly this
number of states is by far to high.
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To avoid a state explosion, we limit the number of times an item can be scanned by the driver.
The driver maintains a counter for every item, that is updated according to theScanette#scan
and Scanette#remove inputs. If the counter for item 𝑎 is equal to 2, the driver outputs an
error code for theScanette#scan(itemA) input and does not pass theScanette#scan
call to the simulator. The counter in the driver is reset, whenever Scanette#unlock is ex-
ecuted successfully, which indicates the beginning of shopping.

We entirely omit the Checkout#remove functionality to hide a similar counter for scan-
ning items at the checkout.

6.1.2 Discussion

By the adjustments presented above, the behaviour of Scanette is restricted to a finite state
machine. We believe these restrictions preserve the most important aspects. For one, it is
intuitive to think of a system of Scanette in terms of states. The restricted Scanette system still
maintains properties such as ”Scanning items has a different effect during shopping than during
verification” or ”The checkout can only scan items after a cashier has logged in”. Moreover, if
we think of inference as testing, the restrictions make sense. Specifying test cases manually
would also implicitly limit the number of items that are scanned.

However, in the case of Scanette, developing a driver required detailed knowledge of the
specification of the system. For instance, the driver must reflect whether the internal state
of the system is “Shopping” or “Verification”, since only during “Shopping” the number of
Scanette#scan is limited. If the driver already involves such a precise understanding of
the system to learn, this threatens the idea of black-box inference.

6.2 Results

6.2.1 Model of Scanette

For the experiments with the Scanette driver, we used the implementation of hW-inference in
the SIMPA tool2. We enabled the optimizations add ℎ in𝑊 , dictionary, search counterexamples
in trace and check for inconsistency between H and the conjecture. We use a random walk as
counterexample oracle. Since ℎ and 𝑊 are constructed from counterexamples, the course of
inference depends on counterexamples. We used 40 different seeds for the random walks.

The inferred machine has 121 states. In around 30% of the inferences, hW-inference found
only 120 states. This is presumably due to the counters built into Scanette. To discover all states
of a counter – similar as for Moore-Locks [Moo56] – unique input sequences are needed. In-
deed, after increasing the maximum length of random walks from 75,000 to 300,000 transitions,
the rate of wrong machines dropped to 5%.

We do not have an explicit model of the Scanette-FSM as a finite state machine to compare
against the model learned by hW-inference. However, its number of states seems plausible. The
implementations of Scanette and Checkout distinguish explicitly 5 and 4 states, respectively.

2The source code of SIMPA is publicly available: https://gricad-gitlab.
univ-grenoble-alpes.fr/SIMPA/SIMPA
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Figure 6.2 Relation between the size of the characterization set and the trace length.

Then we have two items that can be scanned 0, 1 or 2 times each. This totals to an upper bound
of 4 · 5 · 32 = 180 states, of which not all are in fact reachable.

6.2.2 Trace Length

The key measure to asses the performance of any active inference method is the length of
the global trace, viz. the number of input output queries it takes to learn the system under
inference. The global trace does not count interactions that are performed as part of random
walks to find counterexamples. These are attributed to the counterexample oracle, which is not
part of the algorithm. In theory, there could be other oracles, that do not require interaction
with the system under inference.

We observed an average trace length of 3.09 million sequences, ranging from 3.33 · 105 to
1.22 · 107 with a standard deviation of 2.66 · 106. Depending on the counterexample provided
by an oracle, the trace length can thus vary by an order of magnitude.

Figure 6.2 plots the total trace length in relation to the size of the characterization set (6.2a)
and the average length of a characterization sequence (6.2b) of the final𝑊 of an inference. We
observe a Pearson correlation coefficient (PCC) of 0.90 between |𝑊 | and 𝑙 and of 0.83 for ¯|𝑤 |
and all. The length of the homing sequence correlates less with the trace length (PCC 0.59).

One possible reason for the variation of trace length could be the presence of counters in the
FSM. Since only a specific input sequence can distinguish the states within a counter, the total
trace is longer, if this sequence is provided by very late counterexamples. In particular, since
some counterexamples can be ineffective (see Chapter 3).

We summarize our findings:

1. For counterexamples found by random walks, the size of the final𝑊 -set varies widely.
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trace length (rel. diff.) #subinf. |𝑊 | (∑𝑊 |𝑤 |) #prun.

445237 370866 (16.7%) 18 18 6 (28) 3 (23) 3
1508355 1389921 (7.9%) 35 35 25 (251) 22 (246) 4
2521299 2496875 (1.0%) 31 32 19 (117) 10 (47) 5
3156945 2868067 (9.2%) 35 35 22 (164) 13 (90) 7
9161031 7222532 (21.1%) 70 69 55 (776) 14 (114) 8

Avg.1 3093769 2396832 (13.3%) 38.2 39.7 25.7 (236) 12.1 (100) 6.0
stddev.1 2660656 1916275 (36.1%) 17.1 15.8 15.6 (240) 6.6 (90) 2.2

Table 6.1 Key figures on a sample of 5 inferences with hW-inferences without and with W-set prun-
ing (in italics). From right to left: the trace length and the relative reduction by W-set
pruning, the number of subinferences, the number of sequences in the final W-set and
their total size, and the number of times W-set pruning was triggered during inference.
1The average and standard deviation are over all 40 inferences.

2. The total trace length depends linearly on the number of sequences in𝑊 and their total
length, and thus varies widely as well.

6.2.3 W-set Pruning

The impact of the W-set on the trace length motivates reducing the size of 𝑊 . To this end,
we augmented the SIMPA implementation of hW-inference with W-set pruning as described
in Chapter 5. For our experiments, we inferred the Scanette FSM using the 40 same seeds for
random walks as in Section 6.2.1. Table 6.1 compares key figures between both version on a
representative sample, as well as the average of all 40 runs.

On average,𝑊 -set pruning was triggered sparsely during hW-inference. The traces of hW-
inference with W-set pruning were on average 13 % shorter than those of the normal hW-
inference. This decrease is consistent, i.e. in almost every case, W-set pruning resulted in a
shorter trace length. The trace length with W-set pruning show a similar variation coefficient
as the trace length without pruning.

We observed one exceptional case, where W-set pruning almost tripled the trace length and
increased the number of subinference from 24 to 46. In this case, the original trace was quite
short (6.8 · 105 symbols), and we pruned a useful sequence from 𝑊 that distinguished many
states of the real system. However, the fact that on average the number of subinferences is
hardly higher for W-set pruning indicates, that we usually do not prune many useful sequences.

Note, that the number of sequences in the final W-set and their total length is on average
reduced by about 50 %. The smaller W-set does not translate, however, proportionally to a
shorter trace length (as it does without pruning, cf. Figure 6.2).

We summarize the effectiveness of W-set pruning as follows:

1. Extending W-set pruning on average reduce the trace length moderately but consistently.
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2. However, the advantage through W-set pruning is still outweighed by far by the different
quality of random counterexamples.
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7 Conclusion

In this thesis, we examined hW-inference in detail. hW-inference is a deterministic algorithm
that learns finite state machines through interaction. As common in active inference, the learn-
ing relies on externally provided counterexamples. We found the following theoretical and
experimental results.

Theory

• hW-inference does not always terminate. We gave a concrete example of non-termination.
This example exploits that transfer sequences within hW-inference might be chosen in
an adversarial or “unlucky” way. This can easily be repaired by specifying that trans-
fer sequences are chosen in lexicographic order. More generally, the example we gave
illustrated that due to fake states counterexamples may be ineffective.

• The h-forests modification to hW-inference ensures termination, if a homing sequence is
found or provided externally. We also sketched a probabilistic strategy to find a homing
sequence. The latter method is subject to the supposition, that if ℎ is not homing, the
number of fake states increases with processing counterexamples.

Application The observation that we do not progress on some counterexamples raises aware-
ness, that even in terminating inferences, hW-inference might use an unnecessarily large num-
ber of characterizing sequences. Motivated by this fact, we proposed a heuristic to decrease
the size of the W-set.

• For the experiments, we conducted a case study on Scanette, a supermarket scanner
system. Inferring Scanette showed in particular, that the trace length can vary by an
order of magnitude when inferring the same system, with random counterexamples.
This behaviour of hW-inference was not observed before. It indicates that ineffective
counterexamples might indeed threaten performance.

• W-set pruning is a greedy strategy to remove redundant sequences form the character-
ization set. Experiments shows that this decreases the overall trace length by 13% on
average.

Further Research First of all, the question remains open, if hW-inference always terminates,
if we choose transfer sequences in lexicographic order. A potential future proof will have bound
somehow the number of ineffective counterexamples.

36



A different approach is continuing work on h-forests. h-forests can be seen as a more con-
servative version of hw-inference, as it does not use learned transitions to find new states. This
will necessarily increase the length of transfer sequences and thus the total trace length. How-
ever, the fact that every counterexample makes progress once ℎ is homing, might reduce the
number of subinferences and outweigh the effect of longer transfer sequences. This could be
evaluated experimentally.
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